Question 1:

Consider the following linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
1 & 4 & 0 \\
0 & 2 & 5
\end{array}\right), \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)
$$

(a) Find the inverse of matrix A using simple Gauss-elimination method and then find the unique solution of the linear system.
(b) Construct Jacobi iteration matrix T_{J} and then compute error bound $\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{2 0})}\right\|$, using the initial approximation $\mathbf{x}^{(0)}=[1,1,1]^{T}$ using the given above linear system.
(c) Develop the iterative formula $\quad x_{n+1}=\frac{x_{n}^{2}-b}{2 x_{n}-a}, \quad n \geq 0$, for the approximate roots of the quadratic equation $x^{2}-a x+b=0$ using the Newton's method. Then use the formula to find the third approximation of the positive root of the equation $x^{2}-3 x=4$, starting with $x_{0}=3.5$.

Question 2:

$$
(4+4+4)
$$

(a) Find approximation of the point of intersection of the graphs $y=x^{3}+2 x-1$ and $y=\sin x$, using bisection method within accuracy 10^{-1} and the starting interval is [0.5, 1.0].
(b) Let $p_{2}(x)=a x^{2}+b x+c$ be the quadratic Lagrange interpolating polynomial for the data: $(1,2),(2,3),(3, \alpha)$. Compute the values of a, b, and c. If $b=1$, then find the value of α and the approximation of $f(2.5)$ using linear Lagrange polynomial.
(c) If $f(x)=\frac{2}{x}$, show that the third divided difference $f[1,1,1,2]=-1$. Compute an error bound for the approximation of $f(1.5)$ using cubic Newton's polynomial.

Question 3:

$$
(5+4+5)
$$

(a) Let $f(x)=x^{3}+1$ be defined in the interval [0.1, 0.2]. Use the error formula of two-point formula for the approximation of $f^{\prime}(0.1)$ to find the unknown point $\eta \in(0.1,0.2)$.
(b) Suppose that $f(0.25)=f(0.75)=\alpha$. Find α if composite Trapezoidal rule with $n=2$ gives the value of the integral $\int_{0}^{1} f(x) d x=2$ and with $n=4$ gives $\int_{0}^{1} f(x) d x=1.75$.
(c) Show that Taylor's method of order 2 for the initial-value problem

$$
e^{y} y^{\prime}-e^{x}=0, \quad 0 \leq x \leq 1, \quad y(0)=1, \quad \text { with } \quad h=0.5
$$

is

$$
y_{i+1}=y_{i}+h e^{\left(x_{i}-y_{i}\right)}\left[1+\frac{h}{2}\left(1-e^{\left(x_{i}-y_{i}\right)}\right)\right], \quad i \geq 0
$$

What are the values of y_{0}, y_{1}, y_{2}. Compare your approximate solution with the exact solution $y(x)=\ln \left(e^{x}+e-1\right)$.

Question 1:
Consider the following linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
1 & 4 & 0 \\
0 & 2 & 5
\end{array}\right), \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)
$$

(a) Find the inverse of matrix A using simple Gauss-elimination method and then find the unique solution of the linear system.
Solution. Suppose that the inverse $A^{-1}=B$ of the given matrix exists and let

$$
A B=\left(\begin{array}{lll}
3 & 0 & 1 \\
1 & 4 & 0 \\
0 & 2 & 5
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{I}
$$

Now to find the elements of the matrix B, we apply the simple Gaussian elimination on the augmented matrix

$$
\begin{gathered}
{[A \mid \mathbf{I}]=\left(\begin{array}{rrrrrrr}
3 & 0 & 1 & \vdots & 1 & 0 & 0 \\
1 & 4 & 0 & \vdots & 0 & 1 & 0 \\
0 & 2 & 5 & \vdots & 0 & 0 & 1
\end{array}\right)} \\
\left(\begin{array}{rrrrrrr}
3 & 0 & 1 & \vdots & & 1 & 0 \\
0 \\
0 & 4 & -1 / 3 & \vdots & -1 / 3 & 1 & 0 \\
0 & 2 & 5 & \vdots & 0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{rrrrrrr}
3 & 0 & 1 & \vdots & 1 & & 0 \\
0 & 4 & -1 / 3 & \vdots & -1 / 3 & 1 & 0 \\
0 & 0 & 31 / 6 & \vdots & 1 / 6 & -1 / 2 & 1
\end{array}\right)
\end{gathered}
$$

We solve the first system

$$
\left(\begin{array}{rrr}
3 & 0 & 1 \\
0 & 4 & -1 / 3 \\
0 & 0 & 31 / 6
\end{array}\right)\left(\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-1 / 3 \\
1 / 6
\end{array}\right)
$$

by using backward substitution, we get

$$
\begin{array}{rrrr}
3 b_{11} \quad b_{31} & = & 1 \\
4 b_{21}- & 1 / 3 b_{31} & = & -1 / 3 \\
& 31 / 6 b_{31} & = & 1 / 6
\end{array}
$$

which gives $b_{11}=10 / 31, b_{21}=-5 / 62, b_{31}=1 / 31$. Similarly, the solution of the second linear system

$$
\left(\begin{array}{rrr}
3 & 0 & 1 \\
0 & 4 & -1 / 3 \\
0 & 0 & 31 / 6
\end{array}\right)\left(\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
-1 / 2
\end{array}\right)
$$

can be obtained as follows:

$$
\begin{array}{rrrr}
3 b_{12} \quad & +\quad b_{32} & = & 0 \\
4 b_{22} & - & 1 / 3 b_{32} & = \\
& 31 / 6 b_{32} & = & -1 / 2
\end{array}
$$

which gives $b_{12}=1 / 31, b_{22}=15 / 62, b_{32}=-3 / 31$. Finally, the solution of the third linear system

$$
\left(\begin{array}{rrr}
3 & 0 & 1 \\
0 & 4 & -1 / 3 \\
0 & 0 & 31 / 6
\end{array}\right)\left(\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
$$

can be obtained as follows:

$$
\begin{aligned}
3 b_{13} \quad+\quad b_{33} & =0 \\
4 b_{23}-1 / 3 b_{33} & =0 \\
31 / 6 b_{33} & =1
\end{aligned}
$$

and it gives $b_{13}=-32 / 31, b_{23}=1 / 62, b_{33}=6 / 31$. Hence the elements of the inverse matrix B are

$$
B=A^{-1}=\left(\begin{array}{rrr}
10 / 31 & 1 / 31 & -2 / 31 \\
-5 / 62 & 15 / 62 & 1 / 62 \\
1 / 31 & -3 / 31 & 6 / 31
\end{array}\right)=\left(\begin{array}{rrr}
0.3226 & 0.0323 & -0.0645 \\
-0.0806 & 0.2419 & 0.0161 \\
0.0323 & -3 / 310.0968 & 0.1935
\end{array}\right)
$$

which is the required inverse of the given matrix A. To find the solution of the given system, we do as

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{rrr}
10 / 31 & 1 / 31 & -2 / 31 \\
-5 / 62 & 15 / 62 & 1 / 62 \\
1 / 31 & -3 / 31 & 6 / 31
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
6 / 31 \\
14 / 31 \\
13 / 31
\end{array}\right)
$$

Hence

$$
x_{1}=0.1935, \quad x_{2}=0.4516, \quad x_{3}=0.4194
$$

is the solution of the given system.
(b) Construct Jacobi iteration matrix T_{J} and then compute error bound $\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{2 0})}\right\|$, using the initial approximation $\mathbf{x}^{(0)}=[1,1,1]^{T}$ using the given above linear system.

Solution. Let

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
3 & 0 & 1 \\
1 & 4 & 0 \\
0 & 2 & 5
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right)+\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =L+D+U .
\end{aligned}
$$

Jacobi Method:

Since the Jacobi iteration matrix is defined as

$$
T_{J}=-D^{-1}(L+U)
$$

and by using the given information, we have

$$
T_{J}=\left(\begin{array}{rrr}
0 & 0 & -1 / 3 \\
-1 / 4 & 0 & 0 \\
0 & -2 / 5 & 0
\end{array}\right)
$$

Then the l_{∞} norm of the matrix T_{J} is

$$
\left\|T_{J}\right\|_{\infty}=\frac{2}{5}=0.4<1
$$

Thus the Jacobi method will converge for the given linear system.
(b) The Jacobi method for the given system is

$$
\left.\begin{array}{rl}
x_{1}^{(k+1)} & =\frac{1}{3}[1
\end{array} \quad-x_{3}^{(k)}\right]
$$

Starting with initial approximation $x_{1}^{(0)}=1, x_{2}^{(0)}=1, x_{3}^{(0)}=-1$, and for $k=0$, we obtain the first approximations as

$$
\mathrm{x}^{(1)}=[0,1 / 4,1 / 5]^{\mathrm{T}}
$$

Using the error bound formula, we obtain

$$
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{2 0})}\right\| \leq \frac{(0.4)^{20}}{1-0.4}\left\|\left(\begin{array}{l}
0 \\
1 / 4 \\
1 / 5
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\| \leq 1.8 \times 10^{-8}
$$

(c) Develop the iterative formula $\quad x_{n+1}=\frac{x_{n}^{2}-b}{2 x_{n}-a}, \quad n \geq 0$,
for the approximate roots of the quadratic equation $x^{2}-a x+b=0$ using the Newton's method. Then use the formula to find the third approximation of the positive root of the equation $x^{2}-3 x=4$, starting with $x_{0}=3.5$.

Solution.(1c) Given

$$
f(x)=x^{2}-a x+b
$$

therefore, we have

$$
f\left(x_{n}\right)=x_{n}^{2}-a x_{n}+b \quad \text { and } \quad f^{\prime}\left(x_{n}\right)=2 x_{n}-a
$$

Using these functions values in the Newton's iterative formula, we have

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-a x_{n}+b}{2 x_{n}-a}=\frac{x_{n}^{2}-b}{2 x_{n}-a}, \quad n \geq 0
$$

Finding the first three approximations of the positive root of $x^{2}-3 x=4$ using the initial approximation $x_{0}=3.5$ and $a=3, b=-4$, we use the above formula by taking $n=0,1,2$ as follows

$$
x_{1}=\frac{x_{0}^{2}-b}{2 x_{0}-a}=4.0625, \quad x_{2}=\frac{x_{1}^{2}-b}{2 x_{1}-a}=4.0008, \quad x_{3}=\frac{x_{2}^{2}-b}{2 x_{2}-a}=4.0000
$$

are the possible three approximations. Note that the positive root of $x^{2}-3 x-4=0$ is 4 , so we have

$$
\left|4-x_{3}\right|=|4-4|=0.0000
$$

the possible absolute error.

Question 2:

$$
(4+4+4)
$$

(a) Find approximation of the point of intersection of the graphs $y=x^{3}+2 x-1$ and $y=\sin x$, using bisection method within accuracy 10^{-1} and the starting interval is $[0.5,1.0]$.

Solution. The graphs in the Figure ?? show that there is an intersection at about point $(0.66,0.61)$. Using the function $f(x)=x^{3}+2 x-\sin x-1$ and the starting interval [0.5, 1.0], we compute:

$$
\begin{array}{rll}
a_{1}=0.5: & f\left(a_{1}\right)=-0.3544 \\
b_{1}=1.0: & f\left(b_{1}\right)=1.1585
\end{array}
$$

Since $f(x)$ is continuous on $[0.5,1.0]$ and $f(0.5) \cdot f(1.0)<0$, so that a root of $f(x)=0$ lies in the interval $[0.5,1.0]$. Using formula (??) (when $n=1$), we get:

$$
c_{1}=\frac{a_{1}+b_{1}}{2}=0.75 ; \quad f\left(c_{1}\right)=0.240236
$$

Hence the function changes sign on $\left[a_{1}, c_{1}\right]=[0.5,0.75]$. To continue, we squeeze from right and set $a_{2}=a_{1}$ and $b_{2}=c_{1}$. Then the midpoint is:

$$
c_{2}=\frac{a_{2}+b_{2}}{2}=0.625 ; \quad c_{3}=0.6875
$$

(b) Let $p_{2}(x)=a x^{2}+b x+c$ be the quadratic Lagrange interpolating polynomial for the data: $(1,2),(2,3),(3, \alpha)$. Compute the values of a, b, and c. If $b=1$, then find the value of α and the approximation of $f(2.5)$ using linear Lagrange polynomial.

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

$$
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right)
$$

using the given data points, we get

$$
f(x)=p_{2}(x)=L_{0}(x)(2)+L_{1}(x)(3)+L_{2}(x)(\alpha)
$$

where the Lagrange coefficients can be calculate as follows:

$$
\begin{aligned}
& L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{1}{2}\left(x^{2}-5 x+6\right) \\
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{(x-1)(x-3)}{(2-1)(2-3)}=-\left(x^{2}-4 x+3\right) \\
& L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x-1)(x-2)}{(3-1)(3-2)}=\frac{1}{2}\left(x^{2}-3 x+2\right)
\end{aligned}
$$

Thus

$$
f(x)=p_{2}(x)=\frac{1}{2}\left(x^{2}-5 x+6\right)(2)-\left(x^{2}-4 x+3\right)(3)+\frac{1}{2}\left(x^{2}-3 x+2\right)(\alpha)
$$

Separating the coefficients of x^{2}, x and constant term, we get

$$
f(x)=p_{2}(x)=\left(-2+\frac{\alpha}{2}\right) x^{2}+\left(7-\frac{3 \alpha}{2}\right) x+(-3+\alpha)
$$

Since the given value of the constant term is 5 , using this, we get

$$
\left(7-\frac{3 \alpha}{2}\right)=1, \quad \text { gives } \quad \alpha=4
$$

Thus by using $\alpha=4$ and $x_{0}=2, x_{1}=3, x=2.5$, we have

$$
f(2.5) \approx p_{1}(2.5)=\frac{(2.5-3)}{(2-3)}(3)+\frac{(2.5-2)}{(3-2)}(4)=3.5
$$

the required approximation of the function.
(c) If $f(x)=\frac{2}{x}$, show that the third divided difference $f[1,1,1,2]=-1$. Compute an error bound for the approximation of $f(1.5)$ using cubic Newton's polynomial.

Solution. We can find value of $f[1,1,1,2]$ by using divide difference as follows:

$$
\begin{aligned}
f[1,1,1,2] & =\frac{f[1,1,2]-f[1,1,1]}{2-1}=f[1,1,2]-f[1,1,1] \\
& =\frac{f[1,2]-f[1,1]}{2-1}-\frac{f^{\prime \prime}(1)}{2!} \\
& =\frac{f(2)-f(1)}{2-1}-\frac{f^{\prime}(1)}{1!}-\frac{f^{\prime \prime}(1)}{2!} \\
& =f(2)-f(1)-f^{\prime}(1)-\frac{f^{\prime \prime}(1)}{2}
\end{aligned}
$$

Since $f(x)=\frac{2}{x}$, so we have, $f^{\prime}(x)=-\frac{2}{x^{2}}$ and $f^{\prime \prime}(x)=\frac{4}{x^{3}}$. Thus

$$
f[1,1,1,2]=f(2)-f(1)-f^{\prime}(1)-\frac{f^{\prime \prime}(1)}{2}=1-2+2-2=-1
$$

is the required value.

Question 3:
(a) Let $f(x)=x^{3}+1$ be defined in the interval [0.1, 0.2]. Use the error formula of two-point formula for the approximation of $f^{\prime}(0.1)$ to find the unknown point $\eta \in(0.1,0.2)$.

Solution. Since the exact value of the first derivative of the function at $x_{0}=0.2$ is

$$
f^{\prime}(x)=3 x^{2} \quad \text { and } \quad f^{\prime}(0.1)=3(0.1)^{2}=0.03
$$

and the approximate value of $f^{\prime}(0.1)$ using two point formula is

$$
f^{\prime}(0.1) \approx \frac{f(0.2)-f(0.1)}{0.1}=0.07
$$

so error E can be calculated as

$$
E=0.03-0.07=-0.04
$$

Using the error formula and $f^{\prime \prime}(\eta)=6 \eta$, we have

$$
-0.04=-\frac{0.1}{2} 6 \eta,
$$

and solving for η, we get $\eta=0.1333$.
(b) Suppose that $f(0.25)=f(0.75)=\alpha$. Find α if composite Trapezoidal rule with $n=2$ gives the value of the integral $\int_{0}^{1} f(x) d x=2$ and with $n=4$ gives $\int_{0}^{1} f(x) d x=1.75$.

Solution. For $n=2$, using the formula and $h=0.5$, we have

$$
\int_{0}^{1} f(x) d x=2 \approx T_{2}(f)=\frac{0.5}{2}[f(0)+2 f(0.5)+f(1)],
$$

which is equivalent to

$$
8 \approx f(0)+2 f(0.5)+f(1) .
$$

For $n=4$, using the formula and $h=0.25$, we have

$$
\int_{0}^{1} f(x) d x=1.75 \approx T_{4}(f)=\frac{0.25}{2}[f(0)+2(2 \alpha)+2 f(0.5)+f(1)],
$$

which is equals to

$$
8(1.75) \approx f(0)+2 f(0.5)+f(1)+4 \alpha, \quad \text { or } \quad 8(1.75) \approx 8+4 \alpha
$$

(using $8 \approx f(0)+2 f(0.5)+f(1))$. Solving for α, we get $\alpha \approx 1.5$, the required value.
(c) Show that Taylor's method of order 2 for the initial-value problem

$$
e^{y} y^{\prime}-e^{x}=0, \quad 0 \leq x \leq 1, \quad y(0)=1, \quad \text { with } \quad h=0.5,
$$

is

$$
y_{i+1}=y_{i}+h e^{\left(x_{i}-y_{i}\right)}\left[1+\frac{h}{2}\left(1-e^{\left(x_{i}-y_{i}\right)}\right)\right], \quad i \geq 0 .
$$

What are the values of y_{0}, y_{1}, y_{2}. Compare your approximate solution with the exact solution $y(x)=\ln \left(e^{x}+e-1\right)$.

Solution. Since the Taylor's method of order 2 is

$$
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)+\frac{h^{2}}{2} f^{\prime}\left(x_{i}, y_{i}\right), \quad \text { for } \quad i \geq 0,
$$

and the given function is $f(x, y)=e^{x-y}$ with its first derivative $f^{\prime}(x, y)=e^{x-y}\left[1-e^{x-y}\right]$. So using these values, we have

$$
y_{i+1}=y_{i}+h e^{x_{i}-y_{i}}+\frac{h^{2}}{2}\left[e^{x-y}\left(1-e^{x-y}\right)\right], \quad \text { for } \quad i \geq 0
$$

or

$$
y_{i+1}=y_{i}+h e^{\left(x_{i}-y_{i}\right)}\left[1+\frac{h}{2}\left(1-e^{\left(x_{i}-y_{i}\right)}\right)\right], \quad i \geq 0
$$

Now for $i=0$, we have

$$
y_{1}=y_{0}+h e^{\left(x_{0}-y_{0}\right)}\left[1+\frac{h}{2}\left(1-e^{\left(x_{0}-y_{0}\right)}\right)\right]
$$

and using $x_{0}=0, y_{0}$ and $h=0.5$, we get y_{1} as follows

$$
y_{1}=1+(0.5) e^{(0-1)}\left[1+\frac{0.5}{2}\left(1-e^{(0-1)}\right)\right]=1.2130
$$

Similar way, we have the value of y_{2} for taking $i=1$, as follows

$$
\begin{aligned}
y_{2} & =y_{1}+h e^{\left(x_{1}-y_{1}\right)}\left[1+\frac{h}{2}\left(1-e^{\left(x_{1}-y_{1}\right)}\right)\right] \\
& =1.2130+(0.5) e^{(0.5-1.2130)}\left[1+\frac{0.5}{2}\left(1-e^{(0.5-1.2130)}\right)\right]=1.4893
\end{aligned}
$$

the required approximation of $y(x)$ at $x=1$. Thus

$$
\left|y(1)-y_{2}\right|=|1.4899-1.4893|=0.0006
$$

is the possible absolute error in our approximation.

