

King Saud University Department of Mathematics Syllabus of MATH254, First semester 1442 H

Course code: MATH254

Course title: Numerical Methods

Pre-Requisite: (MATH107 or MATH202 or MATH244) and (CSC101 or CSC206 or CSC207)

Instructor: S. Obaidat

Room 2A123, Building 4, Mathematics Department.

Text Book: An Introduction to Numerical Analysis using MATLAB, Rizwan Butt, Copyright 2008 by Infinity Science Press, Hingham, Massachusetts, New Delhi.

References:

1-Numerical Analysis, by Richard L. Burden and J. Douglass Faires, Brooks/Cole, fifth edition.

2- An Introduction to Numerical Linear Algebra using MATLAB, by Rizwan Butt, Heldermann Verlag, Germany.

Course objectives

- 1. Learn the concepts of numerical methods in solving mathematical problems numerically
- 2. Analyse the convergence and error for these methods
- 3. Write computer algorithms to implement these methods for solving certain mathematical problems using computer.

Course learning outcomes

Students completing this course successfully will be able to:

- Solve a nonlinear equation using different numerical methods: Bisection method, fixed point method, Newton's method, secant method.
- Analyze the errors in these methods
- Write computer algorithms to implement these methods.
- Compute the multiplicity of the root of an equation.
- Compute the rate of convergence of a convergent iterative scheme.
- Solve a systems of linear equations using direct methods and analyze the related errors
- Solve a systems of linear equations using iterative methods and analyze the related errors
- Approximate functions and data using polynomial interpolation and analyzing the related errors
- Approximate first and second derivatives using difference formulas and analyze the errors
- Approximate definite integrals using trapezoidal and Simpson's rules and analyze the errors
- Solve an initial value problem involving ordinary differential equations numerically using Taylor methods, Runge-Kutta method of order two.

Week #	Topics	Contact hours (Lectures+Tutorials)
1	Errors and their sources, Nonlinear equations, Bisection method	3+2
2	Fixed point method	3+2
3	Newton's method, Secant method	3+2
4	Multiple roots, modified Newton's method, Rate of convergence (error analysis)	3+2
5	Newton's method for solving nonlinear systems, Systems of Linear Equations, Gaussian elimination,	3+2
6	Gaussian elimination with partial pivoting, LU-decomposition.	3+2
7+8	Iterative methods: Jacobi and Gauss-Seidel methods. Error analysis for solving Linear system	6+4
9+10	Interpolation and Polynomial Approximations Lagrange interpolation formula, Divided differences, Newton's interpolation formula, Error in polynomial interpolation, interpolation using linear splines.	6+4
12	Numerical Differentiation; First derivative: two-point formulas (forward and backward) and three-point formulas (forward, central and backward). Second derivative: the central difference formula and error estimates.	3+2
13	Numerical Integration; Trapezoidal and Simpson's rules and error bounds.	3+2
14	Numerical solutions of ODE's; Taylor methods, Runge-Kutta method of order two and the local truncation error for Euler's and Taylor's formulas.	3+2
15	Review	3+2
16	Final Exam	

Course contents

Homework assignments:

Chapter	Exercices
CHAPTER 2	2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.10.
CHAPTER 3	3.1, 3.2, 3.3, 3.4, 3.6, 3.7.
CHAPTER 4	4.1, 4.2, 4.3
CHAPTER 5	5.1, 5.2, 5.3, 5.5, 5.6.
CHAPTER 6	6.1, 6.2, 6.3.

Grading

30%
20%
10%
40%
100%

Mid-term exam: 7-9 PM, on Tuesday 17/3/1442 H, 3/11/2020G.