King Saud University:Mathematics DepartmentMath-254First Semester1431-32 HFinal ExaminationMaximum Marks = 50Time: 180 mins.

Name of the Teacher: _____ Section No. _____

The Answer Table for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Ps. : Mark {a, b, c or d} for the correct answer in the box.

Quest. No.	Marks
Q. 1 to Q. 15	
Q. 16	
Q. 17	
Q. 18	
Q. 19	
Total	

Question 1: The error bound for the 5th approximation to the solution of the nonlinear equation f(x) = 0 in [1.5, 2] using bisection method is:

(a)
$$\frac{1}{64}$$
 (b) $\frac{1}{32}$ (c) $\frac{1}{8}$ (d) $\frac{1}{16}$

Question 2: if the root of the nonlinear equation f(x) = 0 in [0.5, 2] is a fixed point of the equation $g(x) = \sqrt{2-x}$, then f(x) = 0 is:

(a)
$$x^2 + x - 2 = 0$$
 (b) $\frac{x}{\sqrt{2-x}} - x = 0$ (c) $\frac{\sqrt{2-x}}{x} - x = 0$ (d) $x^2 - x + 2 = 0$

Question 3: The rate of convergence of Newton's method to the root $\alpha = 0$ of the equation $\cos x - 1 - 0.5x^2 = 0$ is:

(a) order 1 (b) order 2 (c) order 3 (d) order 4

Note: The following information will be used in Questions 4 to 6:

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 0.3 & -0.2 \\ -0.1 & 0.4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

Question 4: The solution of the linear system $A\mathbf{x} = \mathbf{b}$ using LU-decomposition $(l_{ii} = 1)$ is:

(a) $[1.1, -0.7]^T$ (b) $[0.1, -0.7]^T$ (c) $[1.1, 0.7]^T$ (d) $[-1.1, -0.7]^T$

Question 5: The relative error with respect to the approximate solution $\hat{\mathbf{x}} = [0.4, -0.6]$ for l_{∞} -norm is bounded by:

Question 6: Using Jacobi iteration method with the initial approximation $[0,0]^T$, the error bound $\|\mathbf{x} - \mathbf{x}^{(4)}\|$ is:

(a)
$$\frac{3}{32}$$
 (b) $\frac{3}{22}$ (c) $\frac{3}{26}$ (d) $\frac{3}{16}$

Question 7: If the best approximation of f(1.5) using the Newton's quadratic interpolating polynomial is 7 and f[1, 2, 3, 4] = 8, then the Newton's cubic polynomial $p_3(1.5)$ gives:

Question 8: Let $f(x) = \ln(x+2)$ be given at the points -1, 0, 4, then the upper bound in approximating $\ln 3$ using a quadratic interpolating polynomial is:

(a) 2.0 (b) 1.0 (c) 3.0 (d) 4.0

Question 9: If a function f(x) satisfies the conditions f[-1,1] = 1, f'(1) = 5, f'(-1) = -1, then f[1,-1,1] equals:

(a)
$$2.0$$
 (b) 3.0 (c) 4.0 (d) 5.0

Question 10: If $S(x) = \begin{cases} cx - 2, & \text{if } 0 \le x \le 1 \\ (4 - c)x, & \text{if } 1 \le x \le 2 \end{cases}$ is a linear spline of a function f(x), then

the value of c is:

Note: The following information will be used in Questions 11 to 13:

Question 11: The best approximate value of f'(0.3) using 3-point difference formula is:

Question 12: The best approximate value of f''(0.4) is:

Question 13: The best approximate value of $\int_0^{0.5} f(x) dx$ is: (a) 2.2 (b) 1.8 (c) 2.0 (d) 1.6

Question 14: The error bound in approximating $\int_0^1 \frac{15}{x+1} dx$ using the composite Trapezoidal rule with n = 5 is:

(a) 0.1 (b) 0.1×10^{-1} (c) 0.1×10^{-2} (d) 0.1×10^{-3}

Question 15: For IVP y' + 3y = 4, y(0) = 5, the approximate value of y(0.1) using Taylor's method of order two when n = 1 is:

(a)
$$4.065$$
 (b) 4.650 (c) 4.560 (d) 4.506

Question 16: Show that $\alpha = 1$ is the root of the nonlinear equation

[5 points]

$$x^4 - x^3 - 3x^2 + 5x = 2.$$

Use quadratic convergent method to find its first approximation $x^{(1)}$ if $x^{(0)} = 0.5$.

Question 17:Solve the following system of linear equations using the Gaussian elimination
with partial pivoting[5 points]

Question 18: Let $x_0 \in (a, b)$, where $f \in C^2[a, b]$ and that $x_1 = x_0 + h \in (a, b)$ for some $h \neq 0$, then show that [5 points]

$$f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{h}.$$

Use the above derived formula to find the approximate value of the derivative f'(2.5) of the function $f(x) = (x+1)\ln(x+1)$, with h = 0.05.

Question 19: How many subintervals approximate the integral $\int_0^2 \frac{1}{x+4} dx$, to an accuracy 10^{-5} using the Simpson's rule ? Also, compute the approximation. [5 points]