King Saud University: Mathematics Department Math-254
First Semester 1431-32 H
Final Examination
Maximum Marks $=50$
Time: 180 mins.

Name of the Student:
 I.D. No.

Name of the Teacher: Section No.

The Answer Table for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Quest. No.	Marks
Q. 1 to Q. 15	
Q. 16	
Q. 17	
Q. 18	
Q. 19	
Total	

Question 1: The error bound for the $5^{\text {th }}$ approximation to the solution of the nonlinear equation $f(x)=0$ in $[1.5,2]$ using bisection method is:
(a) $\frac{1}{64}$
(b) $\frac{1}{32}$
(c) $\frac{1}{8}$
(d) $\frac{1}{16}$

Question 2: if the root of the nonlinear equation $f(x)=0$ in $[0.5,2]$ is a fixed point of the equation $g(x)=\sqrt{2-x}$, then $f(x)=0$ is:
(a) $x^{2}+x-2=0$
(b) $\frac{x}{\sqrt{2-x}}-x=0$
(c) $\frac{\sqrt{2-x}}{x}-x=0$
(d) $x^{2}-x+2=0$

Question 3: The rate of convergence of Newton's method to the root $\alpha=0$ of the equation $\overline{\cos x-1-0} .5 x^{2}=0$ is:
(a) order 1
(b) order 2
(c) order 3
(d) order 4

Note: The following information will be used in Questions 4 to 6:

$$
A=\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right], \quad A^{-1}=\left[\begin{array}{rr}
0.3 & -0.2 \\
-0.1 & 0.4
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
3 \\
-1
\end{array}\right]
$$

Question 4: The solution of the linear system $A \mathbf{x}=\mathbf{b}$ using LU-decomposition $\left(l_{i i}=1\right)$ is:
(a) $[1.1,-0.7]^{T}$
(b) $[0.1,-0.7]^{T}$
(c) $[1.1,0.7]^{T}$
(d) $[-1.1,-0.7]^{T}$

Question 5: The relative error with respect to the approximate solution $\hat{\mathbf{x}}=[0.4,-0.6]$ for $\overline{l_{\infty} \text {-norm is bounded by: }}$
(a) 2.6
(b) 2.7
(c) 2.8
(d) 2.9

Question 6: Using Jacobi iteration method with the initial approximation $[0,0]^{T}$, the error bound $\left\|\mathrm{x}-\mathrm{x}^{(4)}\right\|$ is:
(a) $\frac{3}{32}$
(b) $\frac{3}{22}$
(c) $\frac{3}{26}$
(d) $\frac{3}{16}$

Question 7: If the best approximation of $f(1.5)$ using the Newton's quadratic interpolating

(a) 10.0
(b) 9.0
(c) 12.0
(d) 11.0

Question 8: Let $f(x)=\ln (x+2)$ be given at the points $-1,0,4$, then the upper bound in approximating $\ln 3$ using a quadratic interpolating polynomial is:
(a) 2.0
(b) 1.0
(c) 3.0
(d) 4.0

Question 9: If a function $f(x)$ satisfies the conditions $f[-1,1]=1, f^{\prime}(1)=5, f^{\prime}(-1)=-1$, then $f[1,-1,1]$ equals:
(a) 2.0
(b) 3.0
(c) 4.0
(d) 5.0

Question 10: If $S(x)=\left\{\begin{array}{ll}c x-2, & \text { if } 0 \leq x \leq 1 \\ (4-c) x, & \text { if } 1 \leq x \leq 2\end{array}\right.$ is a linear spline of a function $f(x)$, then the value of c is:
(a) 3.0
(b) 2.0
(c) 4.0
(d) 1.0

Note: The following information will be used in Questions 11 to 13:

$$
\begin{array}{r|rrrrrrr}
x & 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.45 & 0.5 \\
\hline f(x) & -2.0 & 0.0 & 3.0 & 5.0 & 8.0 & 10.0 & 14.0
\end{array}
$$

Question 11: The best approximate value of $f^{\prime}(0.3)$ using 3-point difference formula is:
(a) 25.0
(b) 20.0
(c) 30.0
(d) 35.0

Question 12: The best approximate value of $f^{\prime \prime}(0.4)$ is:
(a) 300
(b) 250
(c) 350
(d) 400

Question 13: The best approximate value of $\int_{0}^{0.5} f(x) d x$ is:
(a) 2.2
(b) 1.8
(c) 2.0
(d) 1.6

Question 14: The error bound in approximating $\int_{0}^{1} \frac{15}{x+1} d x$ using the composite Trapezoidal rule with $n=5$ is:
(a) 0.1
(b) 0.1×10^{-1}
(c) 0.1×10^{-2}
(d) 0.1×10^{-3}

Question 15: For IVP $y^{\prime}+3 y=4, y(0)=5$, the approximate value of $y(0.1)$ using Taylor's method of order two when $n=1$ is:
(a) 4.065
(b) 4.650
(c) 4.560
(d) 4.506

Question 16: Show that $\alpha=1$ is the root of the nonlinear equation

$$
x^{4}-x^{3}-3 x^{2}+5 x=2
$$

Use quadratic convergent method to find its first approximation $x^{(1)}$ if $x^{(0)}=0.5$.

Question 17: Solve the following system of linear equations using the Gaussian elimination with partial pivoting

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
2 x_{1}+3 x_{2}+4 x_{3} & =3 \\
4 x_{1}+9 x_{2}+16 x_{3} & =11
\end{aligned}
$$

Question 18: Let $x_{0} \in(a, b)$, where $f \in C^{2}[a, b]$ and that $x_{1}=x_{0}+h \in(a, b)$ for some $h \neq 0$, then show that

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Use the above derived formula to find the approximate value of the derivative $f^{\prime}(2.5)$ of the function $f(x)=(x+1) \ln (x+1)$, with $h=0.05$.

Question 19: How many subintervals approximate the integral $\int_{0}^{2} \frac{1}{x+4} d x$, to an accuracy 10^{-5} using the Simpson's rule? Also, compute the approximation. [5 points]

