Name of the Student:- I.D. No. \qquad

Name of the Teacher:
Section No.

The Answer Table for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	b	d	b	c	a	c	d	d	a	b	c	c	b	a

Quest. No.	Marks
Q. 1 to Q. 15	
Q. 16	
Q. 17	
Q. 18	
Q. 19	
Total	

Question 1: The error bound for the $5^{t h}$ approximation to the solution of the nonlinear equation $f(x)=0$ in $[1.5,2]$ using bisection method is:
(a) $\frac{1}{64}$
(b) $\frac{1}{32}$
(c) $\frac{1}{8}$
(d) $\frac{1}{16}$

Question 2: If the root of the nonlinear equation $f(x)=0$ in $[0.5,2]$ is a fixed point of the equation $g(x)=\sqrt{2-x}$, then $f(x)=0$ is:
(a) $x^{2}+x-2=0$
(b) $\frac{x}{\sqrt{2-x}}-x=0$
(c) $\frac{\sqrt{2-x}}{x}-x=0$
(d) $x^{2}-x+2=0$

Question 3: The rate of convergence of Newton's method to the root $\alpha=0$ of the equation $\cos x-1-0.5 x^{2}=0$ is:
(a) order 1
(b) order 2
(c) order 3
(d) order 4

Note: The following information will be used in Questions 4 to 6:

$$
A=\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right], \quad A^{-1}=\left[\begin{array}{rr}
0.3 & -0.2 \\
-0.1 & 0.4
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
3 \\
-1
\end{array}\right] .
$$

Question 4: The solution of the linear system $A \mathbf{x}=\mathbf{b}$ using LU-decomposition $\left(l_{i i}=1\right)$ is:
(a) $[1.1,-0.7]^{T}$
(b) $[0.1,-0.7]^{T}$
(c) $[1.1,0.7]^{T}$
(d) $[-1.1,-0.7]^{T}$

Question 5: The relative error with respect to the approximate solution $\hat{\mathbf{x}}=[0.4,-0.6]$ for $\overline{l_{\infty} \text {-norm is bounded by: }}$
(a) 2.6
(b) 2.7
(c) 2.8
(d) 2.9

Question 6: Using Jacobi iteration method with the initial approximation $[0,0]^{T}$, the error bound $\left\|x-x^{(4)}\right\|$ is:
(a) $\frac{3}{32}$
(b) $\frac{3}{22}$
(c) $\frac{3}{26}$
(d) $\frac{3}{16}$

Question 7: If the best approximation of $f(1.5)$ using Newton's quadratic interpolating polynomial is 7 and $f[1,2,3,4]=8$, then the Newton's cubic polynomial $p_{3}(1.5)$ gives:
(a) 10.0
(b) 9.0
(c) 12.0
(d) 11.0

Question 8: Let $f(x)=\ln (x+2)$ be given at the points $-1,0,4$, then the upper bound in approximating $\ln 3$ using a quadratic interpolating polynomial is:
(a) 2.0
(b) 1.0
(c) 3.0
(d) 4.0

Question 9: If a function $f(x)$ satisfies the conditions $f[-1,1]=1, f^{\prime}(1)=5, f^{\prime}(-1)=-1$, then $f[1,-1,1]$ equals:
(a) 2.0
(b) 3.0
(c) 4.0
(d) 5.0

Question 10: If $S(x)=\left\{\begin{array}{ll}c x-2, & \text { if } 0 \leq x \leq 1 \\ (4-c) x, & \text { if } 1 \leq x \leq 2\end{array}\right.$ is a linear spline of a function $f(x)$, then the value of c is:
(a) 3.0
(b) 2.0
(c) 4.0
(d) 1.0

Note: The following information will be used in Questions 11 to 13:

x	0.0	0.1	0.2	0.3	0.4	0.45	0.5
$f(x)$	-2.0	0.0	3.0	5.0	8.0	10.0	14.0

Question 11: The best approximate value of $f^{\prime}(0.3)$ using 3-point difference formula is:
(a) 25.0
(b) 20.0
(c) 30.0
(d) 35.0

Question 12: The best approximate value of $f^{\prime \prime}(0.4)$ is:
(a) 300
(b) 250
(c) 350
(d) 400

Question 13: The best approximate value of $\int_{0}^{0.5} f(x) d x$ is:
(a) 2.2
(b) 1.8
(c) 2.0
(d) 1.6

Question 14: The error bound in approximating $\int_{0}^{1} \frac{15}{x+1} d x$ using the composite Trapezoidal rule with $n=5$ is:
(a) 0.1
(b) 0.1×10^{-1}
(c) 0.1×10^{-2}
(d) 0.1×10^{-3}

Question 15: For IVP $y^{\prime}+3 y=4, y(0)=5$, the approximate value of $y(0.1)$ using Taylor's method of order two when $n=1$ is:
(a) 4.065
(b) 4.650
(c) 4.560
(d) 4.506

$$
x^{4}-x^{3}-3 x^{2}+5 x=2
$$

Use quadratic convergent method to find its first approximation $x^{(1)}$ if $x^{(0)}=0.5$.

Solution. Since

$$
f(x)=x^{4}-x^{3}-3 x^{2}+5 x-2
$$

and

$$
f(1)=1^{4}-1^{3}-3(1)^{2}+5(1)-2=1-1-3+5-2=0
$$

therefore, $\alpha=1$ is the root of the given nonlinear equation. Now to check that the root is simple or multiple, we take the first derivative of the given function as follows:

$$
f^{\prime}(x)=4 x^{3}-3 x^{2}-6 x+5
$$

and its value at $\alpha=1$ is

$$
f^{\prime}(1)=4(1)^{3}-3(1)^{2}-6(1)+5=4-3-6+5=0
$$

which means that $\alpha=1$ is the multiple root of the given nonlinear equation. To find its order of multiplicity, we take the higher derivatives as follows:

$$
\begin{array}{ll}
f^{\prime \prime}(x)=12 x^{2}-6 x-6, & f^{\prime \prime}(1)=0 \\
f^{\prime \prime \prime}(x)=24 x-6, & f^{\prime \prime \prime}(1)=24(1)-6=18 \neq 0
\end{array}
$$

so, the order of multiplicity of the given root is 3 .
For the approximation of a multiple root of the nonlinear equation the quadratic convergent method is the modified Newton's method which is

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \ldots
$$

For the first approximation, we use

$$
x_{1}=x_{0}-m \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}, \quad n=0
$$

which becomes

$$
x_{1}=x_{0}-m \frac{\left[x_{0}^{4}-x_{0}^{3}-3 x_{0}^{2}+5 x_{0}-2\right]}{\left[4 x_{0}^{3}-3 x_{0}^{2}-6 x_{0}+5\right]}
$$

Using $m=3$ and $x_{0}=0.5$ in the above formula, we get

$$
x_{1}=0.5-3 \frac{\left[(0.5)^{4}-(0.5)^{3}-3(0.5)^{2}+5(0.5)-2\right]}{\left[4(0.5)^{3}-3(0.5)^{2}-6(0.5)+5\right]}
$$

and it gives

$$
x_{1}=0.5-3 \frac{\left[(0.5)^{4}-(0.5)^{3}-3(0.5)^{2}+5(0.5)-2\right]}{\left[4(0.5)^{3}-3(0.5)^{2}-6(0.5)+5\right.}
$$

So

$$
x_{1}=0.5-3 \frac{(-0.3125)}{(1.7500)}=0.5+0.5357=1.0357 \approx \alpha=1
$$

Question 17: Solve the following system of linear equations using the Gaussian elimination with partial pivoting

$$
\begin{array}{rr}
x_{1}+x_{2}+x_{3}=1 \\
2 x_{1}+3 x_{2}+4 x_{3}= & 3 \\
4 x_{1}+9 x_{2}+16 x_{3}=11
\end{array}
$$

Solution. For the first elimination step, since 4 is the largest absolute coefficient of first variable x_{1}, therefore, the first row and the third row are interchange, giving us

$$
\begin{array}{r}
4 x_{1}+9 x_{2}+16 x_{3}=11 \\
2 x_{1}+3 x_{2}+4 x_{3}=3 \\
x_{1}+x_{2}+x_{3}=1
\end{array}
$$

Eliminate first variable x_{1} from the second and third rows by subtracting the multiples $m_{21}=\frac{2}{4}$ and $m_{31}=\frac{1}{4}$ of row 1 from row 2 and row 3 respectively, gives

$$
\begin{array}{rlrl}
4 x_{1} & +9 x_{2}+16 x_{3} & =11 \\
& -3 / 2 x_{2}-4 x_{3} & = & -5 / 2 \\
& -5 / 4 x_{2} & -x_{3} & = \\
-7 / 5
\end{array}
$$

For the second elimination step, $-3 / 2$ is the largest absolute coefficient of second variable x_{2}, so eliminate second variable x_{2} from the third row by subtracting the multiple $m_{32}=\frac{5}{6}$ of row 2 from row 3, gives

$$
\begin{array}{rlrl}
4 x_{1} & +9 x_{2}+16 x_{3} & =11 \\
& -3 / 2 x_{2}-4 x_{3} & = & -5 / 2 \\
& 1 / 3 x_{3} & =1 / 3
\end{array}
$$

Obviously, the original set of equations has been transformed to an equivalent upper-triangular form. Now using backward substitution, gives

$$
x_{1}=1, \quad x_{2}=-1, \quad x_{3}=1,
$$

which is the required solution of the given linear system.

Question 18: Let $x_{0} \in(a, b)$, where $f \in C^{2}[a, b]$ and that $x_{1}=x_{0}+h \in(a, b)$ for some $h \neq 0$, then show that

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Use the above derived formula to find the approximate value of the derivative $f^{\prime}(2.5)$ of the function $f(x)=(x+1) \ln (x+1)$, with $h=0.05$.

Solution. Consider the linear Lagrange interpolating polynomial $p_{1}(x)$ which interpolate $f(x)$ at the given points is

$$
\begin{equation*}
f(x) \approx p_{1}(x)=\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right) f\left(x_{0}\right)+\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right) f\left(x_{1}\right) \tag{1}
\end{equation*}
$$

By taking derivative of (1) with respect to x and at $x=x_{0}$, we obtain

$$
\left.\left.f^{\prime}(x)\right|_{x=x_{0}} \approx p_{1}^{\prime}(x)\right|_{x=x_{0}}=-\frac{f\left(x_{0}\right)}{x_{0}-x_{1}}+\frac{f\left(x_{1}\right)}{x_{1}-x_{0}}
$$

Simplifying the above expression, we have (taking $h=x_{1}-x_{0}$)

$$
f^{\prime}\left(x_{0}\right) \approx-\frac{f\left(x_{0}\right)}{h}+\frac{f\left(x_{0}+h\right)}{h}
$$

which can be written as

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \tag{2}
\end{equation*}
$$

It is called the two-point formula.

Using the above formula, with $x_{0}=2.5$, we have

$$
f^{\prime}(2.5) \approx \frac{f(2.5+h)-f(2.5)}{h}
$$

Then for $h=0.05$, we get

$$
\begin{aligned}
f^{\prime}(2.5) & \approx \frac{f(2.55)-f(2.5)}{0.05} \\
& \approx \frac{(2.55+1) \ln (2.55+1)-(2.5+1) \ln (2.5+1)}{0.05}=2.2599
\end{aligned}
$$

Question 19: How many subintervals approximate the integral $\int_{0}^{2} \frac{1}{x+4} d x$, to an accuracy 10^{-5} using the Simpson's rule ? Also, compute the approximation. [5 points]

Solution. To find the subintervals for the given accuracy, we use the following Simpson's formula

$$
\left|E_{S_{n}}(f)\right| \leq \frac{(b-a)^{5}}{180 n^{4}} M \leq 10^{-5}
$$

where

$$
\left|f^{(4)}(\eta(x))\right| \leq M=\max _{0 \leq x \leq 2}\left|f^{(4)}(x)\right|
$$

and $\eta(x)$ is unknown point in $(0,2)$. Since the fourth derivative of the function is

$$
f^{(4)}(x)=\frac{24}{(x+4)^{5}}
$$

and therefore, we have $M=0.0234$, at $x=0$. Thus

$$
\frac{(2-0)^{5}}{180 n^{4}}(0.0234) \leq 10^{-5}
$$

or

$$
n^{4} \geq \frac{2^{5} \times 10^{5} \times(0.0234)}{180}
$$

It gives

$$
\begin{aligned}
n^{4} & \geq 416 \\
n^{2} & \geq 20.40 \\
n & \geq 4.52
\end{aligned}
$$

Hence to get the required accuracy, we need $n=6$ subintervals (because n should be even) that ensures the stipulated accuracy.
The composite Simpson's rule for $n=6$, can be written as

$$
S_{6}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4\left[f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right]+2\left[f\left(x_{2}\right)+f\left(x_{4}\right)\right]+f\left(x_{6}\right)\right]
$$

and since

$$
x_{0}=0, x_{1}=1 / 3, x_{2}=2 / 3, x_{3}=3 / 3=1, x_{4}=4 / 3, x_{5}=5 / 3, x_{6}=6 / 3=2
$$

because

$$
h=\frac{2-0}{6}=\frac{1}{3}
$$

Thus

$$
S_{6}(f)=\frac{1 / 3}{3}[f(0)+4[f(1 / 3)+f(1)+f(5 / 3)]+2[f(2 / 3)+f(4 / 3)]+f(2)]
$$

Since given, $f(x)=\frac{1}{x+4}$, therefore

$$
S_{6}(f)=\frac{1}{9}[(1 / 4)+4[(3 / 13)+(3 / 15)+(3 / 17)]+2[(3 / 14)+(3 / 16)]+(1 / 6)]
$$

or

$$
S_{6}(f)=\frac{1}{9}[3.6492]=0.4055
$$

Hence

$$
\int_{0}^{2} \frac{1}{x+4} d x \approx S_{6}(f)=0.4055
$$

the required approximation.

Question 1. To compute the error bound for the $n t h$ approximation we use the formula

$$
\left|\alpha-c_{n}\right| \leq \frac{b-a}{2^{n}}, \quad n \geq 1
$$

so to find the error bound for the $5^{t h}$ approximation we have

$$
\left|\alpha-c_{5}\right| \leq \frac{2-1.5}{2^{5}}=\frac{0.5}{2^{5}}=\frac{1}{64} .
$$

Question 2. Since

$$
f(x)=x-g(x)=0
$$

and given

$$
x=g(x)=\sqrt{2-x} \quad \text { or } \quad x^{2}=2-x
$$

Thus

$$
f(x)=x^{2}+2 x-2=0 .
$$

Question 3. Given

$$
f(x)=\cos x-1-0.5 x^{2}
$$

and at $\alpha=0$, we have

$$
f(0)=\cos (0)-1-0.5(0)^{2}=0
$$

which means that $\alpha=0$ is the root of the given equation. Also,

$$
f^{\prime}(x)=-\sin x-1.0 x
$$

and $f^{\prime}(0)=0$, shows that $\alpha=0$ is the multiple root of the given equation. For multiple root the rate of convergence of Newton's method is linear.

Question 4. Using LU-decomposition $\left(l_{i i}=1\right)$, the factorization of the matrix is

$$
A=\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0.25 & 1
\end{array}\right]\left[\begin{array}{rr}
4 & 2 \\
0 & 2.5
\end{array}\right] .
$$

Solving the lower system

$$
L \mathbf{y}=\mathbf{b}
$$

we get

$$
y_{1}=3.0 \quad \text { and } \quad y_{2}=-1.75
$$

and the upper system

$$
U \mathbf{x}=\mathbf{y}
$$

gives

$$
x_{1}=1.1 \quad \text { and } \quad x_{2}=-0.7 .
$$

Question 5. Since we know the formula for the relative error with respect to the approximate solution is

$$
\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|} \leq K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}, \quad \text { provided } \quad \mathbf{x} \neq 0, \quad \mathbf{b} \neq 0
$$

First we compute the condition number of the matrix as follows:

$$
K(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=(6)(0.5)=3
$$

The residual vector can be calculated as

$$
\begin{aligned}
\mathbf{r} & =\mathbf{b}-A \mathbf{x}^{*} \\
& =\binom{3}{-1}-\left(\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right)\binom{0.4}{-0.6}
\end{aligned}
$$

After simplifying, we get

$$
\mathbf{r}=\binom{2.6}{0.4}
$$

and it gives

$$
\|\mathbf{r}\|_{\infty}=2.6
$$

Thus

$$
\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|} \leq(3) \frac{(2.6)}{3}=2.6
$$

Question 6. The error bound formula using Jacobi method is

$$
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{k})}\right\| \leq \frac{\left\|T_{J}\right\|^{k}}{1-\left\|T_{J}\right\|}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(\mathbf{0})}\right\|
$$

Since the first approximation by Jacobi method is $\mathbf{x}^{(1)}=[3 / 4,-1 / 3]^{T}$ and the Jacobi iteration matrix is

$$
T_{J}=-D^{-1}(L+U)=\left(\begin{array}{rr}
0 & -\frac{1}{2} \\
-\frac{1}{3} & 0
\end{array}\right)
$$

Then the l_{∞} norm of the matrix T_{J} is

$$
\left\|T_{J}\right\|_{\infty}=\max \left\{-\frac{1}{2},-\frac{1}{3}\right\}=\frac{1}{2}
$$

Now using $k=4$, we have

$$
\left\|\mathbf{x}-\mathbf{x}^{(4)}\right\| \leq \frac{(1 / 2)^{4}}{1-1 / 2}\left\|\binom{3 / 4}{-1 / 3}-\binom{0}{0}\right\|
$$

or

$$
\left\|x-x^{(4)}\right\| \leq \frac{1}{8}(3 / 4)=\frac{3}{32}
$$

Question 7. The Newton cubic interpolatory polynomial $p_{3}(x)$ that fits at all four points $x_{0}=1, x_{1}=2, x_{2}=3, x_{4}=4$, is

$$
p_{3}(x)=p_{2}(x)+f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Given $p_{2}(1.5)=7$ and $f[1,2,3,4]=8$, we have

$$
p_{3}(1.5)=p_{2}(1.5)+f[1,2,3,4](1.5-1)(1.5-2)(1.5-3)
$$

Thus

$$
f(1.5) \approx p_{3}(1.5)=7+8(0.5)(-0.5)(-1.5)=7+3=10 .
$$

Question 8. To compute the error bound for the approximation of $\ln 3$ using the quadratic interpolating polynomial $p_{2}(x)$, we have

$$
\left|f(x)-p_{2}(x)\right|=\frac{\left|f^{\prime \prime \prime}(\eta(x))\right|}{3!}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right|
$$

Since the third derivative of the given function is

$$
f^{\prime \prime \prime}(x)=\frac{2}{(x+2)^{3}}
$$

and

$$
\left|f^{\prime \prime \prime}(\eta(x))\right|=\left|\frac{2}{(\eta(x)+2)^{3}}\right|, \quad \text { for } \quad \eta(x) \in(-1,4)
$$

Then

$$
M=\max _{-1 \leq x \leq 4}\left|\frac{2}{(x+2)^{3}}\right|=2.0
$$

and

$$
\left|f(1)-p_{2}(1)\right| \leq \frac{(2)(6)}{6}=2.0 .
$$

Question 9. Since we know the second divided difference of the function is

$$
f\left[x_{1}, x_{0}, x_{1}\right]=f\left[x_{0}, x_{1}, x_{1}\right]=\frac{f\left[x_{1}, x_{1}\right]-f\left[x_{0}, x_{1}\right]}{x_{1}-x_{0}}
$$

Then

$$
f\left[x_{0}, x_{1}, x_{1}\right]=\frac{f^{\prime}\left(x_{1}\right)-f\left[x_{0}, x_{1}\right]}{x_{1}-x_{0}}
$$

Using the given information, we have

$$
f[-1,1,1]=\frac{f^{\prime}(1)-f[-1,1]}{1+1}
$$

or

$$
f[-1,1,1]=\frac{5-1}{2}=2.0 .
$$

Question 10. For linear spline, we know that

$$
s(1)=f(1)
$$

which gives

$$
c(1)-2=(4-c)(1) \quad \text { gives } \quad c=3.0 .
$$

Or, the function must be continuous at $x=1$, which means that the limit of the function must exists at $x=1$. This implies that left hand limit and the right hand limit at $x=1$ are equal, that is:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{+}} f(x) \\
\lim _{x \rightarrow 1^{-}} c x-2 & =\lim _{x \rightarrow 1^{+}}(4-c) x \\
c-2 & =4-c \\
2 c & =6 \\
c & =3.0 .
\end{aligned}
$$

Question 11. The best approximate value of $f^{\prime}\left(x_{1}\right)$ using 3-point difference formula will be central difference formula which is

$$
f^{\prime}\left(x_{1}\right) \approx \frac{f\left(x_{1}+h\right)-f\left(x_{1}-h\right)}{2 h}
$$

Now using $x_{1}=0.3$ and $h=0.1$ in the above formula, we have

$$
f^{\prime}(0.3) \approx \frac{f(0.3+0.1)-f(0.3-0.1)}{2(0.1)}=\frac{f(0.4)-f(0.2)}{0.2}
$$

which gives

$$
f^{\prime}(0.3) \approx \frac{f(0.4)-f(0.2)}{0.2}=\frac{8.0-3.0}{0.2}=25.0
$$

Question 12. Since the three-point central-difference formula for the approximation of the second derivative of a function $f(x)$ at the given point $x=x_{1}$ is

$$
f^{\prime \prime}\left(x_{1}\right) \approx \frac{f\left(x_{1}-h\right)-2 f\left(x_{1}\right)+f\left(x_{1}+h\right)}{h^{2}}
$$

Now using $x_{1}=0.4$ and $h=0.1$, we get

$$
f^{\prime \prime}(0.1) \approx \frac{f(0.4-0.1)-2 f(0.4)+f(0.4+0.1)}{(0.1)^{2}}
$$

which gives

$$
f^{\prime \prime}(0.1) \approx \frac{f(0.3)-2 f(0.4)+f(0.5)}{(0.01)}=\frac{5.0-2(8.0)+14.0}{(0.01)}
$$

or

$$
f^{\prime \prime}(0.1) \approx \frac{3.0}{(0.01)}=300
$$

Question 13. The given points at equally spaced are

$$
x_{0}=0.0, x_{1}=0.1, x_{2}=0.2, x_{3}=0.3, x_{4}=0.4, x_{5}=0.5
$$

therefore, the best approximate value of the given integral can be obtained only by Composite Trapezoidal's rule because $n=5$. Composite Trapezoidal's rule for six points or $n=5$ is

$$
T_{5}(f)=\frac{h}{2}\left[f\left(x_{0}\right)+2\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right]+f\left(x_{5}\right)\right]
$$

Taking $h=0.1$, we get

$$
T_{5}(f)=\frac{0.1}{2}[f(0.0)+2[f(0.1)+f(0.2)+f(0.3)+f(0.4)]+f(0.5)]
$$

or

$$
T_{5}(f)=\frac{0.1}{2}[-2.0+2[0.0+3.0+5.0+8.0]+14.0]
$$

Thus

$$
\int_{0}^{0.5} f(x) d x \approx T_{5}(f)=\frac{0.1}{2}[-2.0+32+14.0]=\frac{0.1}{2}(44)=2.2
$$

Question 14. The global error in the composite Trapezoidal rule is

$$
E_{T_{n}}(f)=-\frac{h^{2}}{12}(b-a) f^{\prime \prime}(\eta(x)), \quad \eta(x) \in(a, b)
$$

The second derivative of the function can be obtain as

$$
f^{\prime}(x)=-\frac{15}{(x+1)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{30}{(x+1)^{3}}
$$

Since $\eta(x)$ is unknown point in $(0,1)$, therefore, the bound $\left|f^{\prime \prime}\right|$ on $[0,1]$ is

$$
M=\max _{0 \leq x \leq 1}\left|f^{\prime \prime}(x)\right|=\left|\frac{30}{(x+1)^{3}}\right|=30.0
$$

Thus the error bound in approximating the given integral using the composite Trapezoidal rule is

$$
\left|E_{T_{5}}(f)\right| \leq \frac{(1 / 5)^{2}}{12}(30)=0.1
$$

Question 15. The Taylor's method of order two is

$$
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)+\frac{h^{2}}{2} f^{\prime}\left(x_{i}, y_{i}\right), \quad \text { for } \quad i=0,1,2,3,4
$$

Since $f(x, y)=4-3 y, f^{\prime}(x, y)=-12+9 y$, and $x_{0}=0, y_{0}=5$, then for $i=0$, we have

$$
\begin{aligned}
& y\left(x_{1}\right) \approx y_{1}=y_{0}+h\left(4-3 y_{0}\right)+\frac{h^{2}}{2}\left(-12+9 y_{0}\right) \\
& y(0.1) \approx y_{1}=5+(0.1)(4-15)+(0.005)(-12+45)=4.065
\end{aligned}
$$

Solutions of Three-Types of MCQ

The Answer Table for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box. (FInal)- First Type

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	b	d	b	c	a	c	d	d	a	b	c	c	b	a

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box. (FINal)- Second Type

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	c	d	b	a	b	d	a	c	b	c	d	a	a	d	c

Ps. : Mark \{a, b, c or d\} for the correct answer in the box. (FINAl)- Third Type

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	b	a	c	d	a	c	b	a	a	b	c	d	b	a	d

