Name of the Student:
I.D. No.
\qquad

Name of the Teacher:
Section No.
Note: Check the total number of pages are Five (5). (10 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q. 1 to Q. 10 : Marks: 2 for each one $(2 \times 10=20)$
Ps. : Mark \{a, b, c or d\} for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Quest. No.	Marks
Q. 1 to Q. 10	
Q. 11	
Q. 12	
Q. 13	
Total	

Question 1: The number of iterations required to approximate the root of the equation $2 \sin x+x-1=$ in $[0,1]$ accurate to within 10^{-5} using Bisection method is:
(a) 10
(b) 13
(c) 17
(d) 19

Question 2: Newton's iterative method for approximating the square root of a positive number a is given by:
(a) $\left(\frac{x_{n}}{2}+\frac{a}{x_{n}^{2}}\right)$
(b) $\left(\frac{x_{n}}{2}-\frac{a}{x_{n}^{2}}\right)$
(c) $\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$
(d) $\frac{1}{2}\left(x_{n}-\frac{a}{x_{n}}\right)$

Question 3: The iterative scheme $x_{n+1}=\frac{x_{n}^{2}+2}{2 x_{n}-1}$ converges to $\alpha=2$:
(a) linearly
(b) quadratically
(c) cubically
(d) quartically

Question 4: The condition number of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1-\frac{1}{2 n}\end{array}\right]$ is:
(a) $2 n$
(b) $4 n$
(c) $6 n$
(d) $8 n$

Question 5: The norm of the Gauss-Seidel iteration matrix for the linear system of two equations $2 x_{1}-x_{2}=1, x_{1}+2 x_{2}=3$ is:
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) 1
(d) $\frac{1}{8}$

Question 6: If $f(x)=\frac{1}{x}$ and $\alpha \neq 1$, then the value of α for which $f[1, \alpha]=f[2,2,2]$ is:
(a) -2
(b) -4
(c) -6
(d) -8

Question 7: When using the two-point forward formula with $h=0.2$ for approximating the value of $f^{\prime}(1)$, where $f(x)=\ln (x+1)$, we have the computed approximation (accurate to 4 decimal places):
(a) 0.4766
(b) 0.4966
(c) 0.4666
(d) 0.4866

Question 8: If $f(0)=3, f(1)=\frac{\alpha}{2}, f(2)=\alpha$, and Simpson's rule for $\int_{0}^{2} f(x) d x$ gives 2, then the value of α is:
(a) 1.0
(b) 2.0
(c) 0.5
(d) 3.0

Question 9: Using data points: $(0,1),(0.1,1.1),(0.2,1.3),(0.3,1.4),(0.45,1.5),(0.5,1.7)$, then the best approximate value of $f^{\prime \prime}(0.3)$ using 3 -point difference formula is:
(a) 0.0
(b) 0.1
(c) 0.2
(d) 0.3

Question 10: Given initial-value problem $y^{\prime}=x+y, y(0)=1$, the approximate value of $y(0.1)$ using Euler's method with $n=1$ is:
(a) 1.1
(b) 1.01
(c) 1.02
(d) 1.2

Check the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	c	c	b	d	a	d	b	a	c	a

The Answer Tables for Q. 1 to Q. 10 : MAth

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	a	b	d	c	b	c	d	b	a	c

The Answer Tables for Q. 1 to Q. 10 : MATh

Check the correct answer in the box.

| Q. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ | b | a | c | a | d | b | a | c | d | b |

Question 11: Find the rate of convergence of the Newton's method at the root $x=0$ of the equation $x^{2} e^{x}=0$. Use quadratic convergence method to find second approximation to the root using $x_{0}=0.1$. Also, compute the absolute error.

Solution. Given $f(x)=x^{2} e^{x}$ and so $f^{\prime}(x)=\left(x^{2}+2 x\right) e^{x}$. Using Newton's iterative formula, we get

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}^{2} e^{x_{n}}\right)}{\left(\left(x_{n}^{2}+2 x_{n}\right) e_{n}^{x}\right)}=\frac{\left(x_{n}+x_{n}^{2}\right)}{\left(2+x_{n}\right)}, \quad n \geq 0
$$

The fixed point form of the developed Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=\frac{\left(x_{n}+x_{n}^{2}\right)}{\left(2+x_{n}\right)}
$$

where

$$
g(x)=\frac{\left(x+x^{2}\right)}{(2+x)}
$$

By taking derivative, we have

$$
\begin{gathered}
g^{\prime}(x)=\frac{\left(x^{2}+4 x+2\right)}{(2+x)^{2}} \\
g^{\prime}(0)=\frac{1}{2}=\neq 0
\end{gathered}
$$

Thus the method converges linearly to the given root.
The quadratic convergent method is modified Newton's method

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0
$$

where m is the order of multiplicity of the zero of the function. To find m, we do

$$
f^{\prime \prime}(x)=\left(x^{2}+4 x+2\right) e^{x}, \quad \text { and } \quad f^{\prime \prime}(0)=2 \neq 0
$$

so $m=2$. Thus

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{\left(x_{n}^{2} e^{x_{n}}\right)}{\left(\left(x_{n}^{2}+2 x_{n}\right) e_{n}^{x}\right)}=x_{n}-2 \frac{\left(x_{n}^{2}\right)}{\left(x_{n}^{2}+2 x_{n}\right)}, \quad n \geq 0
$$

Now using initial approximation $x_{0}=0.1$, we have

$$
x_{1}=x_{0}-2 \frac{\left(x_{0}^{2}\right)}{\left(x_{0}^{2}+2 x_{0}\right)}=0.004
$$

and

$$
x_{2}=x_{1}-2 \frac{\left(x_{1}^{2}\right)}{\left(x_{1}^{2}+2 x_{1}\right)}=0.0000008
$$

the required two approximations. The possible absolute error is

$$
\left.\mid \alpha-x_{2}\right)|=|0.0-0.0315|=0.0000008
$$

Question 12: Use LU-factorization method with Doolittle's method ($l_{i i}=1$) to find values of α for which the following linear system has unique solution and infinitely many solutions. Write down the solution for both cases.

$$
\begin{aligned}
x_{1}+0.5 x_{2}+\alpha x_{3} & =0.5 \\
2 x_{1}-3 x_{2}+x_{3} & =-1 \\
-x_{1}-1.5 x_{2}+2.5 x_{3} & =-1
\end{aligned}
$$

Solution. We use Simple Gauss-elimination method to convert the following matrix of the given system by using the multiples $m_{21}=2, m_{31}=-1$ and $m_{32}=1 / 4$,

$$
A=\left(\begin{array}{rrr}
1 & 0.5 & \alpha \\
2 & -3 & 1 \\
-1 & -1.5 & 2.5
\end{array}\right),
$$

into equivalent an upper-triangular matrix form

$$
\left(\begin{array}{rrr}
1 & 0.5 & \alpha \\
0 & -4 & 1-2 \alpha \\
0 & 0 & 0.5 \alpha-0.25
\end{array}\right),
$$

to get LU-factorization of A in the following form

$$
A=\left(\begin{array}{rrr}
1 & 0.5 & \alpha \\
2 & -3 & 1 \\
-1 & -1.5 & 2.5
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0.25 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0.5 & \alpha \\
0 & -4 & 1-2 \alpha \\
0 & 0 & 1.5 \alpha+2.25
\end{array}\right)=L U .
$$

Then by solving the lower-triangular system of the form $L \mathbf{y}=[0.5,-1,-1]^{T}$ and obtained the solution $\mathbf{y}=[0.5,-2,0]^{T}$. Now solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ of the form

$$
\left(\begin{array}{rrr}
1 & 0.5 & \alpha \\
0 & -4 & 1-2 \alpha \\
0 & 0 & 1.5 \alpha+2.25
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
0.5 \\
-2 \\
0
\end{array}\right) .
$$

From last equation we have

$$
(1.5 \alpha+2.25) x_{3}=0,
$$

so for unique solution of the given system $(1.5 \alpha+2.25) \neq 0$ (nonsingular), which implies that $x_{3}=0$. Using backward substitution, we have $x_{2}=0.5$ and $x_{1}=0.25$. Thus, $[0.25,0.5,0]^{T}$ is the unique solution of the given system.
If $(1.5 \alpha+2.25)=0$ (singular), that is, $\alpha=-1.5$, then for this we must have infinitely many solutions. So to get the infinitely many solutions, we have to solve the following resulting system

$$
\begin{array}{r}
x_{1}+0.5 x_{2}+4 x_{3}=0.5 \\
\\
-4 x_{2}+(1-2 \alpha) x_{3}=-2
\end{array}
$$

By taking $\alpha=-1.5$ and If we choose $x_{3}=t \in R, t \neq 0$, then we have $x_{2}=0.5+t$ and $x_{1}=0.25+t$, so $\mathbf{x}^{*}=[0.25+t, 0.5+t, t]^{T}$ is the required infinitely many solutions of the given system.

Question 13: Construct the divided differences table for $f(x)=\ln (x+1)+x^{2}$ using the values $x=1,2,3,4,5$. If the approximation of $f(3.5)$ by a cubic Newton's polynomial is 13.7526 , then find the best approximation of $f(3.5)$ by using Newton's polynomial of degree four. Compute the error bound.

Solution. The results of the divided differences are listed in Table 1.

Table 1: Divided differences table for $f(x)=\ln (x+1)+x^{2}$

		Zeroth Divided Difference	First Divided Difference	Second Divided Difference	Third Divided Difference	Fourth Divided Difference
0	1	1.6931				
1	2	5.0986	3.4055			
2	3	10.3863	5.2877	0.9411		
3	4	17.6094	7.2231	0.9677	0.0089	
4	5	26.7918	9.1823	0.9796	0.0040	-0.0012

$$
\begin{aligned}
& f(3.5) \approx p_{4}(3.5)=p_{3}(3.5)+(3.5-1)(3.5-2)(3.5-3)(3.5-4) f[1,2,3,4,5] \\
& f(3.5) \approx p_{4}(3.5)=13.7526+(2.5)(1.5)(0.5)(-1.5)(-0.0012) \\
& f(3.5) \approx p_{4}(3.5)=13.7538
\end{aligned}
$$

Since the error bound for the fourth-degree polynomial $p_{4}(x)$ is

$$
\left|f(x)-p_{4}(x)\right|=\frac{\left|f^{(5)}(\eta(x))\right|}{5!}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)\right|
$$

Taking the fifth derivative of the given function, we have

$$
f^{(6)}(x)=\frac{24}{(x+1)^{5}}
$$

and

$$
\left.\left|f^{(5)}(\eta(x))\right|=M=\left|\leq \max _{1 \leq x \leq 5}\right| \frac{24}{(x+1)^{5}} \right\rvert\,=\frac{3}{4}=0.75
$$

therefore, we get

$$
\left|f(3.5)-p_{4}(3.5)\right| \leq \frac{(1.40625)(0.75)}{120}=8.789 \times 10^{-3}
$$

which is the required error bound for the approximation $p_{4}(3.5)$.

