

King Saud University College of Sciences/ Department of Mathematics Syllabus of: MATH351, First semester 1435/1436H

Course code: MATH351

Course title: Numerical Analysis

Pre-Requisite: MATH104

Instructor: Dr. Saleem Obaidat

Room 2A123, Building 4, Mathematics Department.

E-mail: saleem@ksu.edu.sa

Website: http://fac.ksu.edu.sa/saleem/home

Text Book: Numerical Analysis, by Richard L. Burden and J. Douglass Faires

References:

- Introduction to Numerical Analysis Using MATLAB, by R. Butt
- Elementary Numerical Analysis, by K. Atkinson.

Course objectives

- 1. Learn the concepts of numerical methods in solving mathematical problems numerically
- 2. Analyse the error for these methods
- 3. Write computer algorithms to implement these methods for solving certain mathematical problems using computer.

Course learning outcomes

Students completing this course will be able to:

- Solve a nonlinear equation using different numerical methods: Bisection method, fixed point method, Newton's method, secant method.
- Analyze the errors in these methods
- Write computer algorithms to implement these methods.
- Compute the multiplicity of a repeated root.
- Compute the rate of convergence of a convergent iterative scheme.
- Solve a systems of linear equations using direct methods and analyze the related errors
- Solve a systems of linear equations using iterative methods and analyze the related errors
- Approximate functions and data using polynomial interpolation and analyzing the related errors
- Approximate first and second derivatives using difference formulas and analyze the errors
- Approximate definite integrals using trapezoidal and Simpson's rules and analyze the errors

Course contents

Week #	Date	Topics	Contact hours (Lectures+Tutorials)
1	31 Aug. 4-Sep.	Errors and their sources, Nonlinear equations, Bisection method	3+2
2	September 7-11	Fixed point method, Newton's method,	3+2
3	September 14-18	Secant method, multiple roots, modified Newton's method	3+2
4	September 21-25	Rate of convergence (error analysis), Newton's method for solving nonlinear systems.	3+2
		Hajj Vacation	
5	October 12-16	Systems of Linear Equations, Gaussian elimination	3+2
6	October 19-23	Gaussian elimination with partial pivoting, LU- decomposition.	3+2
7	October 26-30	Iterative methods: Jacobi and Gauss-Seidel methods.	3+2
8	November 2-6	Error analysis for solving Linear system	3+2
9	November 9-13	Interpolation and Polynomial Approximations Lagrange interpolation formula	3+2
10	November 16-20	Divided differences, Newton's interpolation formula. Error in polynomial interpolation	3+2
11	November 23-27	Numerical Differentiation; First derivative: two-point formulas (forward and backward) and three-point formulas (forward, central and backward)	3+2
12	30 Nov 4 Dec.	Second derivative: the central difference formula and error estimates.	3+2
13	December 7-11	Numerical Integration; Trapezoidal and Simpson's rules and error bounds.	3+2
14	December 14-18	Numerical solutions of ODE's; Taylor's methods	3+2
15	December 21-25	Revision	3+2
16		Final Exam	

Homework assignments:

Chapter	Exercices
CHAPTER 2	2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.10.
CHAPTER 3	3.1, 3.2, 3.3, 3.4, 3.6, 3.7.
CHAPTER 4	4.1, 4.2, 4.3
CHAPTER 5	5.1, 5.2, 5.3, 5.5, 5.6.
CHAPTER 6	6.1, 6.2, 6.3.

Grading

First midterm 25% Second midterm 25% Homework assignments and quizzes 10% Final Exam 40% Total 100% First midterm will be on, (7 - 8:30) PM. First midterm will be on, (7 - 8:30) PM.