Time: 120 minutes

Second Midterm Exam

Question 1: (9 points)

Solve the following problems by finding the optimal solution and the range of λ for which the optimal solution remains optimal.

(a)

$$\max z = (2 - 3\lambda)x_1 + (3 + 4\lambda)x_2$$

s.t. $x_1 + x_2 \le 6$
 $x_1 + 2x_2 \le 8$
 $x_1, x_2 \ge 0$.

Use the optimal tableau to find the solution if $\lambda = 0.3$.

(b)

$$\max z = 2x_1 + 3x_2$$

s.t. $x_1 + x_2 \le 6 - 3\lambda$
 $x_1 + 2x_2 \le 8 + 4\lambda$
 $x_1, x_2 \ge 0$.

Use the optimal tableau to find the solution if $\lambda = 0.3$.

Question 2: (7 points)

(a) Solve the following integer problem.

$$\max z = 4x_1 + 3x_2$$
 s.t. $2x_1 + x_2 \le 6$
$$x_1 + x_2 \le 4$$

$$x_1, x_2 \text{ are nonnegative integers.}$$

(b) Use branch and bound to solve the following integer problem.

$$\max z = 2x_1 + 3x_2$$
 s.t. $x_1 + 3x_2 \le 19$
$$x_1 + x_2 \le 10$$

$$x_1, x_2 \text{ are nonnegative integers.}$$

Question 3: (9 points)

(a) If we have the following LP

$$\begin{aligned} \max z &= -3x_1 + x_2 + 2x_3 \\ \text{s.t.} & x_2 + 2x_3 \leq 3 \\ -x_1 & + 3x_3 \leq -1 \\ -2x_1 - 3x_2 & \leq -2 \\ x_1, x_2, x_3 \geq 0 \end{aligned}$$

- (1) Find the dual problem and show that it has the same feasible region Ω .
- (2) Show that $\Omega \neq \phi$, then find the solution of the dual problem without using the simplex method.

(b) Consider the following LP:

$$\label{eq:started_exp} \begin{split} \max z &= c_1 x_1 + c_2 x_2 \\ \text{s.t.} \quad & 3 x_1 + 4 x_2 \leq 6 \\ & 2 x_1 + 3 x_2 \leq 4 \\ & x_1, x_2 \geq 0 \enspace . \end{split}$$

you are given that the optimal tableau for this LP is

$$z + s_1 + 2s_2 = r$$

$$x_1 + 3s_1 - 4s_2 = 2$$

$$x_2 - 2s_1 + 3s_2 = 0$$

Without doing any pivots, determine c_1 , c_2 and r.

Good Luck

Ibraheem Alolyan