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© Area Between Curves

© Volume Of A Solid Revolution
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Outline

Weekly Objectives

Week 10: Area between curves and Volume of a solid revolution.

The student is expected to be able to:
© Calculate the area between curves.
@ Calculate the volume of a solid revolution using the disk
method.
© Calculate the volume of a solid revolution using the washer
method.
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Area Between Curves

Area Between Two Curves

In this section we are going to look at finding the area between two
curves.

QUISTION:

How we can determine the area between y = f(x) and y = g(x)
on the interval [a, b]

Theorem: Area Between Curves

Let f(x) and g(x) be continuous functions defind on [a, b] where
f(x) > g(x) for all x in [a, b].

The area of the region bounded by the curves

y = f(x), y =g(x) and the lines x =aand x = b is

/ {f(x) - g(x)} dx

a
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b
A= / (upper function) - (lower function) dx,
a

a<x<hb
\

/
a0/
/

/
/
; \. / I
b

A= / F(x) — g(x) dx
a



Area Between Curves

The steps to calculate the area between curves

@ Find the intersection points between the curves.
@ determinant the upper function and the lower function.

© Calculate the integral:
b
A= / (upper function) - (lower function) dx

a
Which give us the required area.
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Area Between Curves

Area Between Two Curves (Example)

Find the area enclosed between the graphs y = x and y = x> — 2.

@ Points of intersection between y = x?> —2 and y = x is:
xX2-2=x=x>-x-2=0=(x+1)(x—2)=0
=x=—land x =2

@ Note that upper function is y = x and lower function is
y = x% — 2 Note that y = x?> — 2 is a parabola opens upward
with vertex (0, —2), and y = x is a straight line passing
through the origin.

2

2
(3] A:/x—(x2—2)dx:/x—x2+2dxz
-1 -1

2 X3 g2 27
Z-52, =%

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)



Area Between Curves

Area Between Curves (Example)

Find the area enclosed between the graphs
y=e,y=x>-1,x=-1,andx =1

y fx)

2 g(x)
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Area Between Curves

Area Between Curves (Example)

Note that upper function is y = €* and lower function is

y=x>-1

1 1
A:/ex—(xz—l)dx:/ex—x2+1dx:[ex—fx3+x
-1 -1
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Area Between Curves

Area Between Curves (Example)

Compute the area oh the region bounded by the curves
y=x3andy =3x -2
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Area Between Curves

Area Between Curves (Example)

@ Points of intersection between y = x3 and y = 3x — 2
x3=3x4+2=0=(x-1)(x>+x-2)=0
=x=—-2and x=1

@ Note that upper function is y = x3 and lower function is
y=3x—-2
1

1
(3] A:/x3—(3x—2) dX:/X3—3X—|—2 dx
22

-2
4 3 1
= l2—2x2+2x
-2
3 27
= — 6:
4+ 4
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Area Between Curves

Area Between Curves (Example)

Example 2.4

Find the area enclosed between the graphs
f(x) = x? and g(x) = x between x = 0, and x = 2.
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Area Between Curves

Area Between Curves (Example)

@ we see that the two graphs intersect at (0,0) and (1,1).
@ In the interval [0, 1], we have g(x) = x > f(x) = x2,
and in the interval [1,2], we have f(x) = x? > g(x) = x

© Therefore the desired area is:

2 371 3 272
A:/(X—X2) dx+/(x2—x) dx = X 4 x _x
2 0 3 2
0 1 0 1
1 5
— -4+ _-1
6+6
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Disk Method)

Suppose we have a curve y = f(x)

1 y =f®)

Imagine that the part of the curve between the ordinates x = a
and x = b is rotated about the x-axis through 360 degree.
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Disk Method)

Now if we take a cross-section of the solid, parallel to the y-axis,

this cross-section will be a circle.
y = f@)

But rather than take a cross-section, let us take a thin disc of
thickness dx, with the face of the disc nearest the y-axis at a
distance x from the origin.
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Disk Method)

y =/

¥+
10!

—
x=a x x=b

The radius of this circular face will then be y. The radius of the
other circular face will be y + dy, where Jy is the change in y
caused by the small positive increase in x, dx.
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Disk Method)

The volume dV of the disc is then given by the volume of a
cylinder, wr?h, so that

8V = nridx
So the volume V of the solid of revolution is given by

x=b

V= lim Zav_ I|m Zwy25x—7r/[f(x )P dx

x—>0
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Volume Of A Solid Revolution

The curve y = x*> — 1 is rotated about the x-axis through 360
degree. Find the volume of the solid generated when the area
contained between the curve and the x-axis is rotated about the

x-axis by 360 degree.

b 1
v—7ra/[;f(><)]2 dx—7r/1[x2 ~ 17 dx

The graph of y =22 — 1

x> 2x3 ! 167
ey X —_
B 15
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Volume Of A Solid Revolution

Find the volume of the solid formed by revolving the region
bounded by the graph of f(x) = —x? 4 x and the x-axis about the
X-axis.

Using the Disk Method, you can find the volume of the solid of

revolution.
1 1 1

V= TF/[f(X)]2 dx = 7r/[(—x2+x)2 dx = 7T/(x4—2x3+x2) dx
0 0 0

1
_ x> 2x4 x3 _ T
_W[?_T+? =30
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

The Washer Method

Let f and g be continuous and
nonnegative on the closed interval
[a, b], if f(x) > g(x) for all x in the
interval, then the volume of the solid
formed by revolving the region

Plane region

(@)

bounded by the graphs of f(x) and i‘i’:lifh‘;tevuluﬁon
g(x) (a < x < b), about the x-axis
is:

b‘ e 0"
V= [{ PR - gl | o ‘
f(x) is athe outer radius

(b)

and g(x) is the inner radius.
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

Find the volume of the solid formed by revolving the region
bounded by the graphs of f(x) = v/25 — x? and g(x) =3

We sketch the bounding region and the solid of revolution:

: -
}) 5 in.
f(x) =/25 —x2 y= “i
| A/\ -
{(x) 3{ I

—5—4—3—2—1 1 2 345
Plane region Solid of revolution

(a) (b)
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

First find the points of intersection of f and g, by setting f(x)
equal to g(x) and solving for x.

V25 —x2=3=25-x2=9=x>=16=x =44

Using f(x) as the outer radius and g(x) as the inner radius, you
can findbthe volume of the solid as showr.

V=r [{IFGOF - (g0l } ax =7 [(vVE5 =522 - (3] o

4 X3 4
:77/(16—x2)dx:7r 16x — —| =—"—
J, 3|, 3
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

Example 3.4

Calculate the volume of the solid obtained by rotating the region
bounded by the parabola y = x? and the square root function

y = /x around the x—axis

We sketch the bounding region and the solid of revolution:
y
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

Both curves intersect at the points x = 0 and x = 1. Using the

washer method, we have
b 1

V= [{IFR - [P | ox = ()7 - ()2 ox
0

a
1
[ R I L
B ) |12 5], 2 5] 10
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

Find the volume of the solid obtained by rotating the region
bounded by two parabolas y = x*> +1 and y = 3 — x? about the
X—axis.

We sketch the bounding region and the solid of revolution:
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Volume Of A Solid Revolution

Volume Of A Solid Revolution (The Washer Method)

First we determine the boundaries a and b:

xX2+1=3-x>=22?=2=x>=1=x=+1

Hence the limits of integration are a=1 and b = —1.

Using the washer method, we find the volume of the solid:
b

V= [{IF0R - gt | ax
1 ? 1
:77_/1 [(3—x2)2—(x2+1)2} dx:7r_/1 (8—8x2) dx

1 1
3
_ 2 _ X2 _327r
—87r/<1 X)dX—Sﬂ'[X 3] 1_—3
-1 -
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