FIRST SEMESTER FINAL EXAMINATION, 1442
 Dept. Math., College of Science, KSU
 Math: 107 Full Mark: 40 Time: 3 Hours

[Marks: Q1: $[4+3]$ Q2: $[3+2+3]$ Q3: $[3+3+3]$ Q4: $[2+2+4]$ Q5: $[3+3+2]]$
Q1. (a) Consider the following linear system where λ is a real number:

$$
\begin{array}{rr}
2 x+3 y+(\lambda+2) z & =5 \\
x+y+z & =2 \\
4 \lambda x+3 \lambda y+3 z=8 \lambda & -3
\end{array}
$$

Determine for which values of λ this system has (i) no solution, (ii) a unique solution, and (iii) infinitely many solution.
(b) Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 1 & 4 \\
-1 & 6 & 2
\end{array}\right]
$$

Apply adjoint method to find the inverse A^{-1} of the matrix A.
Q2. (a) Let $\vec{a}=\langle-2,1,2\rangle, \vec{b}=\langle 1,-2,2\rangle$, and $\vec{c}=\langle 2,2,1\rangle$. Show that $\operatorname{Com}_{\vec{b}} \vec{a}=\operatorname{Com}_{\vec{c}} \vec{b}=\operatorname{Com}_{\vec{a}} \vec{c}$. (b) Find the parametric equations of the line of intersection of the following planes:

$$
\begin{array}{ll}
P_{1}: & 2 x+y+4 z=8 \\
P_{2}: & x+3 y-z=-1
\end{array}
$$

(c) Identify the quadratic surface $2 x^{2}+3 y^{2}-6 z=0$. Then sketch the surface by finding its traces on the coordinate planes.
Q3. (a) If the parametric equation of a circle of radius a is given by $C: x=a \cos t, y=a \sin t$, then show that the curvature $\kappa=\frac{1}{a}$.
(b) Find the unit tangent vector to the curve $x=t^{2}+1, y=4 t-3, \quad z=2 t^{2}-6 t$ at the point when $t=2$.
(c) The position vector of a moving particle at time t along a curve C is $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}$, $1 \leq t \leq 4$. Find the tangential and normal components of acceleration at time t.
Q4. (a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6} y+x^{2} y^{3}}{\left(x^{4}+y^{2}\right)^{2}}$ does not exist .
(b) Find $\frac{d w}{d t}$ if $w=\ln (u+v), u=e^{-3 t}, v=t^{5}-t^{2}$.
(c) Find the directional derivative of the function $f(x, y)=\frac{x-y}{x y+2}$ at $(1,1)$ in the direction of the vector $\vec{a}=12 \vec{i}+5 \vec{j}$; what is the maximum rate of change of this function at $(1,1)$?
Q5. (a) Find the equation of tangent plane to the surface $z=x^{3}-12 x y+8 y^{3}$ at $P(2,-1,24)$.
(b) Find the extrema and saddle points of $f(x, y)=x^{3}-12 x y+8 y^{3}$, if any.
(c) Use Lagrange multipliers to find the extrema of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraint $x+y+z=36$.

