King Saud University Science and Medical Studies Section for girls **College of Science** Department of Mathematics

Name:			Student No.:				
Section No.:			Sequence No.:	Sequence No.:			
Question No.	I	II	III	IV	Total		
Mark							
<u>QUESTION I</u> Choose the corre	ct answer						
1. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{5i}{n^2}$ is equivalent.	qual to:						
i. 5	ii. $\frac{5}{2}$		iii. O	iv. No	one of the previous.		
$2. A = \frac{b-a}{3n} \Big[f(x_0) \Big]$	$f_{0}) + 4f(x_{1}) + 2f(x_{2})$	$+4f(x_3)++$	$4f(x_{n-1}) + f(x_n)$] is a	an approximation v	alue of $\int_{a}^{b} f(x) dx$		
using : i. Midpoint Rule	ii. Trape	ii. Trapezoidal Rule.		e. iv. No	one of the previous.		
3. An estimation va	alue of $\int_{1}^{2} \frac{1}{\sqrt[3]{x}} dx$						
i. $\frac{1}{\sqrt[3]{2}} \le \int_{1}^{2} \frac{1}{\sqrt[3]{x}} \le 1$	ii. $1 \le \int_{1}^{2} \frac{1}{\sqrt[3]{x}} \le \sqrt[3]{2}$		iii. $0 < \int_{1}^{2} \frac{1}{\sqrt[3]{x}} \le \sqrt[3]{x}$	/2 iv. No	one of the previous.		
4. If $F(x) = \int_{x^2}^{\pi} \cos(x) dx$	$\sinh t \; dt$, then $F'(x)$ e	quals					
i. $-2x \sinh x^2$	ii. −2 <i>x</i> o	$\cosh x^2$	iii. $2x \cosh x^2$	iv. No	one of the previous.		
5. The partial fract	ion decomposition of	$\frac{1}{x^4 + x^3 + x^2}$ has	as the form:				
i. $\frac{A}{x^2} + \frac{Bx + C}{x^2 + x + c}$	$\frac{1}{1}$ ii. $\frac{A}{x}$ +	$\frac{B}{x^2} + \frac{Cx + D}{x^2 + x + 1}$	iii. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$	$+\frac{D}{(x+1)^2}$ iv. No	one of the previous.		
6. $F(x) = \sin x$ is a	an anti-derivative of:						
i. $\frac{\sin^2 x}{2}$.	ii. –cos	¢.	iii. $\cos x$.	iv. No	one of the previous.		
7. $\int_{1}^{2} e^{\pi + \ln x^{2}} dx$ is eq	jual to:						
i. $\frac{7}{3}e^{\pi}$.	ii. $\frac{7^3}{6}e^{2x}$	<i>.</i>	iii. $e^{\pi+\ln 4}-e^{\pi}$.	iv. No	one of the previous.		

8. If $(6, \frac{\pi}{2})$ is a polar co	ordinate representation of a poin	t, then the corresponding rectang	gular representation is:
i. (0,6).	ii. (6,0).	iii. (0,–6).	iv. None of the previous.
9. A polar coordinate re	presentation of the rectangular p	ooint (2,5) is:	
i. $\left(\sqrt{29}, \tan^{-1}\frac{2}{5}\right)$.	ii. $(-\sqrt{29}, \tan^{-1}\frac{5}{2})$.	iii. $(-\sqrt{29}, \tan^{-1}\frac{5}{2} + \pi)$	iv. None of the previous.
10. The parametric equa	ations $x = \sqrt{t}$, $y = 2 \ln t$ can be c	converted to the rectangular equa	ation:
i. $y = 2\ln x$.	ii. $y = 4 \ln x$.	iii. $y = \ln \sqrt{x}$.	iv. None of the previous.
QUESTION II			

1. Sketch the graph of the polar equation $r = 4 - 4\cos\theta$, and then find the area of the region when $0 \le \theta \le \frac{\pi}{2}$

2. Show that the rectangular equation $\frac{x}{\sqrt{x^2 + y^2}} = 5y$, $y \neq 0$ can be converted to the polar equation $r = \frac{1}{5}\cot\theta$.

ln(ab) = lna + lnb.

QUESTION III

Evaluate the following integrals:

i. $\int (2x+1)\cos x dx$

ii. $\int e^x \operatorname{sech} x dx$

iii. $\int \tan^3 x \sec^4 x dx$
iv. $\int_{1}^{\infty} \frac{\ln x}{x} dx$.
$v.\int \frac{x}{4-x^4} dx$

QUESTION IV

1. Find the arc length of the function $y = \frac{1}{3}x^{\frac{3}{2}} - x^{\frac{1}{2}}$ from x = 1 to x = 4.

2. <u>Sketch</u> and <u>find</u> the area determined by the following functions

x = 3y, $x = 2 + y^2$

(DO NOT INTEGRATE)

3. <u>Sketch</u> and then <u>find</u> the volume of the solid formed by revolving the region bounded by the equations $y = \sqrt{x}$, y = 2, and x = 0 (DO NOT INTEGRATE)

1) About x-axis.

2) About y-axis

GOOD LUCK 😳