Name:	Student No.:
Section No.:	Sequence No.:

Question No.	I	II	III	IV	Total
Mark					

QUESTION I

Choose the correct answer

1. $\operatorname{Lim}_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{5 i}{n^{2}}$ is equal to:
i. 5
ii. $\frac{5}{2}$
iii. 0
iv. None of the previous.
2. $A=\frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots \ldots .+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$ is an approximation value of $\int_{a}^{b} f(x) d x$ using :
i. Midpoint Rule
ii. Trapezoidal Rule.
iii. Simpson's Rule.
iv. None of the previous.
3. An estimation value of $\int_{1}^{2} \frac{1}{\sqrt[3]{x}} d x$
i. $\frac{1}{\sqrt[3]{2}} \leq \int_{1}^{2} \frac{1}{\sqrt[3]{x}} \leq 1$
ii. $1 \leq \int_{1}^{2} \frac{1}{\sqrt[3]{x}} \leq \sqrt[3]{2}$
iii. $0<\int_{1}^{2} \frac{1}{\sqrt[3]{x}} \leq \sqrt[3]{2}$
iv. None of the previous.
4. If $F(x)=\int_{x^{2}}^{\pi} \cosh t d t$, then $F^{\prime}(x)$ equals
i. . $-2 x \sinh x^{2}$
ii. $-2 x \cosh x^{2}$
iii. $2 x \cosh x^{2}$
iv. None of the previous.
5. The partial fraction decomposition of $\frac{1}{x^{4}+x^{3}+x^{2}}$ has the form:
i. $\frac{A}{x^{2}}+\frac{B x+C}{x^{2}+x+1}$
ii. $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+x+1}$
$\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}$
iv. None of the previous.
6. $F(x)=\sin x$ is an anti-derivative of:
i. $\frac{\sin ^{2} x}{2}$.
ii. $-\cos x$.
iii. $\cos x$.
iv. None of the previous.
7. $\int_{1}^{2} e^{\pi+\ln x^{2}} d x$ is equal to:
i. $\frac{7}{3} e^{\pi}$.
ii. $\frac{7^{3}}{6} e^{2 \pi}$.
iii. $e^{\pi+\ln 4}-e^{\pi}$.
iv. None of the previous.
8. If ($6, \frac{\pi}{2}$) is a polar coordinate representation of a point, then the corresponding rectangular representation is:
i. $(0,6)$.
ii. $(6,0)$.
iii. $(0,-6)$.
iv. None of the previous.
9. A polar coordinate representation of the rectangular point $(2,5)$ is:
i. $\left(\sqrt{29}, \tan ^{-1} \frac{2}{5}\right)$.
ii. $\left(-\sqrt{29}, \tan ^{-1} \frac{5}{2}\right)$.
iii. $\left(-\sqrt{29}, \tan ^{-1} \frac{5}{2}+\pi\right)$
iv. None of the previous.
10. The parametric equations $x=\sqrt{t}, y=2 \ln t$ can be converted to the rectangular equation:
i. $y=2 \ln x$.
ii. $y=4 \ln x$.
iii. $y=\ln \sqrt{x}$.
iv. None of the previous.

QUESTION II

1. Sketch the graph of the polar equation $r=4-4 \cos \theta$, and then find the area of the region when $0 \leq \theta \leq \frac{\pi}{2}$
2. Show that the rectangular equation $\frac{x}{\sqrt{x^{2}+y^{2}}}=5 y, y \neq 0$ can be converted to the polar equation $r=\frac{1}{5} \cot \theta$.
3.Show that for $a, b \in R$

$$
\ln (a b)=\ln a+\ln b .
$$

QUESTION III
Evaluate the following integrals:
i. $\int(2 x+1) \cos x d x$
ii. $\int e^{x} \operatorname{sech} x d x$
iii. $\int \tan ^{3} x \sec ^{4} x d x$
iv. $\int_{1}^{\infty} \frac{\ln x}{x} d x$.
v. $\int \frac{x}{4-x^{4}} d x$

1. Find the arc length of the function $y=\frac{1}{3} x^{\frac{3}{2}}-x^{\frac{1}{2}}$ from $x=1$ to $x=4$.

2. Sketch and find the area determined by the following functions

$$
x=3 y, x=2+y^{2}
$$

(DO NOT INTEGRATE)
3. Sketch and then find the volume of the solid formed by revolving the region bounded by the equations $y=\sqrt{x}, y=2$, and $x=0$ (DO NOT INTEGRATE)

1) About x-axis.
2) About y-axis
