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Proposition (or statement)

Definition 2.1
Proposition A proposition is a declarative sentence (that is, a
sentence that declares a fact) that is either true or false, but not
both.

Example 2.1
1 Washington, D.C., is the capital of the United States of

America.
2 Toronto is the capital of Canada.
3 1 + 1 = 3
4 2 + 3 = 5

Propositions 1 and 4 are true, whereas 2 and 3 are false.
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Proposition (or statement)

Remark
Some sentences that are not propositions
Example:

1 What time is it?
2 Read this carefully.
3 x + 1 = 3
4 x + y = z

Sentences 1 and 2 are not propositions because they are not
declarative sentences. Sentences 3 and 4 are not propositions
because they are neither true nor false.
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Proposition (or statement)

We use letters to denote propositional variables (or statement
variables).
The conventional letters used for propositional variables are
p, q, r, s, . . . .
The truth value of a proposition is true, denoted by T, if it is
a true proposition,
The truth value of a proposition is false, denoted by F, if it is
a false proposition.
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Negation of proposition

Definition 2.2
Negation of proposition
Let p be a proposition. The negation of p, denoted by ¬p (also
denoted by p̄), is the statement It is not the case that p. The
proposition ¬p is read not p. The truth value of the negation of p,
¬p, is the opposite of the truth value of p.

Example 2.2
The negation of the proposition "Michael’s PC runs Linux" is
"It is not the case that Michael’s PC runs Linux."
Or more simply "Michael’s PC does not run Linux."
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Negation of proposition

The truth table for the negation
of a proposition.

P ¬P
T F
F T

This table displays the truth
table for the negation of a
proposition p. This table has a
row for each of the two possible
truth values of a proposition p.
Each row shows the truth value
of ¬p corresponding to the
truth value of p for this row.

Dr. Borhen Halouani Discrete Mathematics (MATH 151)



Outline
The Foundations: Logic and Proofs

Propositional Logic
Propositional Equivalences
Predicates and Quantifiers

Conjunction of tow propositions

Definition 2.3
conjunction
Let p and q be propositions. The conjunction of p and q, denoted
by p ∧ q, is the proposition p and q. The conjunction p ∧ q is true
when both p and q are true and is false otherwise.
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Conjunction of tow propositions

Example 2.3
The conjunction of the
propositions p ∧ q where p is
"Rebecca’s PC has more than
16 GB free hard disk space"
and q is the proposition
"The processor in Rebecca’s PC
runs faster than 1 GHz."
"Rebecca’s PC has more than
16 GB free hard disk space, and
the processor in Rebecca’s PC
runs faster than 1 GHz."

The truth table for the
Conjunction of tow propositions

p ∧ q

.

p q p ∧ q
T T T
T F F
F T F
F F F
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Disjunction of tow propositions

Definition 2.4
disjunction
Let p and q be propositions. The disjunction of p and q, denoted
by p ∨ q, is the proposition "p or q." The disjunction p ∨ q is false
when both p and q are false and is true otherwise.
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Disjunction of tow propositions

Example 2.4
The disjunction of the
propositions p ∨ q where p is
"Rebecca’s PC has more than
16 GB free hard disk space"
and q is the proposition
"The processor in Rebecca’s PC
runs faster than 1 GHz."
"Rebecca’s PC has at least 16
GB free hard disk space, or the
processor in Rebecca’s PC runs
faster than 1 GHz."

The truth table for the
Disjunction of tow propositions

p ∨ q

.

p q p ∨ q
T T T
T F T
F T T
F F F
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Examples

Examples
Let p "Today is Friday" and q "It is raining today",

p ∧ q is "Today is Friday and it is raining today".
This proposition is true only on rainy Fridays and is false on
any other rainy day or on Fridays when it does not rain.
p ∨ q is "Today is Friday or it is raining today".
This proposition is true on any day that is a Friday or a rainy
day(including rainy Fridays) and is false on any day other than
Friday when it also does not rain.
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Exclusive or of tow propositions

Definition 2.5
Exclusive or
Let p and q be propositions. The exclusive or of p and q, denoted
by p ⊕ q, is the proposition that is true when exactly one of p and
q is true and is false otherwise.
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Exclusive or of tow propositions

Example 2.5
The exclusive or of the
propositions p "Today is Friday"
and q "It is raining today",p ⊕ q
is "Either today is Friday or it is
raining today, but not both".
This proposition is true on any
day that is a Friday or a rainy
day(not including rainy Fridays)
and is false on any day other
than Friday when it does not
rain or rainy Fridays.

The truth table for the
Exclusive Or of Two
Propositions.

p ⊕ q

.

p q p ⊕ q
T T F
T F T
F T T
F F F
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Conditional Statements of tow propositions

Definition 2.6
Conditional statement
Let p and q be propositions. The conditional statement p → q is
the proposition "if p, then q."
The conditional statement p → q is false when p is true and q is
false, and true otherwise. In the conditional statement p → q,
p is called the hypothesis (or antecedent or premise) and q is called
the conclusion (or consequence).
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Conditional Statement of tow propositions

Example 2.6
"If it is Friday then it is raining
today" is a proposition which is
of the form p → q. The above
proposition is true if it is not
Friday(premise is false) or if it is
Friday and it is raining, and it is
false when it is Friday but it is
not raining.

TheTruth Table for the
Conditional Statement of Two
Propositions. p → q.

p q p → q
T T T
T F F
F T T
F F T
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Biconditional statement

Definition 2.7
biconditional Statement of tow propositions
Let p and q be propositions. The biconditional statement p ↔ q is
the proposition "p if and only if q." The biconditional statement
p ↔ q is true when p and q have the same truth values, and is false
otherwise. Biconditional statements are also called bi-implications.
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Biconditional Statement of tow propositions

Example 2.7
"It is raining today if and only if
it is Friday today."
is a proposition which is of the
form p ↔ q.
The above proposition is true if
it is not Friday and it is not
raining or if it is Friday and it is
raining, and it is false when it is
not Friday or it is not raining.

The truth table for the for the
biconditional statement of Two
Propositions. p ↔ q.

p q p ↔ q
T T T
T F F
F T F
F F T
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Precedence of Logical Operators

Operator Precedence
¬ 1
∧ 2
∨ 3
→ 4
←→ 5

Truth Tables of Compound
Propositions

Example 2.8
Construct the truth table of the compound
proposition

(p ∨ ¬q)→ (p ∧ q)
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Truth Tables of Compound Propositions

The Truth Table of (p ∨ ¬q)→ (p ∧ q)
p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)
T T F T T T
T F T T F F
F T F F F T
F F T T F F

Dr. Borhen Halouani Discrete Mathematics (MATH 151)



Outline
The Foundations: Logic and Proofs

Propositional Logic
Propositional Equivalences
Predicates and Quantifiers

Logic and Bit Operations

Bit Operations
Computer bit operations correspond to the logical connectives. By
replacing true by a one and false by a zero in the truth tables for
the operators ∧, ∨ and ⊕.

x y x ∨ y x ∧ y x ⊕ y
1 1 1 1 0
1 0 1 0 1
0 1 1 0 1
0 0 0 0 0
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Logic and Bit Operations

Definition 2.8
A bit string is a sequence of zero or more bits. The length of this
string is the number of bits in the string.

Example 2.9
101010011 is a bit string of length nine.

Exercise 1
Find the bitwise OR, bitwise AND, and bitwise XOR of the bit
strings 01 1011 0110 and 11 0001 1101.
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Bit Operations

Exercise 1
Find the bitwise OR, bitwise AND, and bitwise XOR of the bit
strings 01 1011 0110 and 11 0001 1101.

Solution 1
01 1011 0110
11 0001 1101
11 1011 1111 bitwise OR
01 0001 0100 bitwise AND
10 1010 1011 bitwise XOR
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Bit Operations

Exercise 1
Find the bitwise OR, bitwise AND, and bitwise XOR of the bit
strings 01 1011 0110 and 11 0001 1101.

Solution 1
01 1011 0110
11 0001 1101
11 1011 1111 bitwise OR
01 0001 0100 bitwise AND
10 1010 1011 bitwise XOR
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Propositional Equivalences

Definition 2.9
tautology:
A compound proposition that is always true, no matter what the
truth values of the propositional variables that occur in it.
contradiction:
A compound proposition that is always false.
contingency:
A compound proposition that is neither a tautology nor a
contradiction.

Example 2.10
(p ∧ q)→ (p ∨ q) is a tautology.
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Propositional Equivalences

Example 2.11
We can construct examples of tautologies and contradictions using
just one propositional variable.
Consider the truth tables of p ∨ ¬p and p ∧ ¬p.
p ∨ ¬p is a tautology, because it is always true,
and p ∧ ¬p is a contradiction, because it is always false

Truth table

p ¬p p ∨ ¬p p ∧ ¬p
T F T F
F T T F

Table: Tautology and Contradiction
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Logical Equivalences

Definition 2.10
The compound propositions p and q are called logically equivalent
if p ↔ q is a tautology.
The notation p ≡ q denotes that p and q are logically equivalent.

Example 2.12
Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.
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Logical Equivalences

Truth table

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Table: Truth table for ¬(p ∨ q) and ¬p ∧ ¬q
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Logical Equivalences

Example 2.13
Show that p → q and ¬p ∨ q are logically equivalent.

Solution

p q p → q ¬p ¬p ∨ q
T T T F T
T F F F F
F T T T T
F F T T T

Table: Truth table for p → q and ¬p ∨ q

Dr. Borhen Halouani Discrete Mathematics (MATH 151)



Outline
The Foundations: Logic and Proofs

Propositional Logic
Propositional Equivalences
Predicates and Quantifiers

Logical Equivalences

Exercise 2
Let p, q and r three propositions, show that p ∨ (q ∧ r) and
(p ∨ q) ∧ (p ∨ r) are logically equivalent.

Remark 2.1
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) This is the distributive law of
disjunction over conjunction.

Dr. Borhen Halouani Discrete Mathematics (MATH 151)
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Logical Equivalences

Exercise 2
Let p, q and r three propositions, show that p ∨ (q ∧ r) and
(p ∨ q) ∧ (p ∨ r) are logically equivalent.

Remark 2.1
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) This is the distributive law of
disjunction over conjunction.
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Solution

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table: A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) Are
Logically Equivalent.
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Logical Equivalences

Remark 2.2
This table contains some important equivalences. In these
equivalences, T denotes the compound proposition that is always
true and F denotes the compound proposition that is always false.
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Logical Equivalences

Equivalence Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ P
p ∨ T ≡ T Domination laws
p ∧ F ≡ F
p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p
¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
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Logical Equivalences

Equivalence Name
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p
p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

Table: Logical Equivalences.
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Logical Equivalences

Equivalence
p → q ≡ ¬p ∨ q
¬(p → q) ≡ p ∧ ¬q
p → q ≡ ¬q → ¬p
p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)
(p → q) ∧ (p → r) ≡ p → (q ∧ r)
(p → r) ∧ (q → r) ≡ (p ∨ q)→ r
(p → q) ∨ (p → r) ≡ p → (q ∨ r)
(p → r) ∨ (q → r) ≡ (p ∧ q)→ r

Table: Logical Equivalences Involving Conditional Statements.
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Logical Equivalences

Equivalence
p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
¬(p ↔ q) ≡ p ↔ ¬q

Table: Logical Equivalences Involving Biconditional Statements.
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Morgan’s Laws

Morgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

¬(p ∧ q) ≡ ¬p ∨ ¬q

Furthermore, note that Morgan’s laws extend to

¬(p1 ∨ p2 ∨ · · · ∨ pn) ≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn
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Examples

Examples
1 We can show that ¬(p → q) and p ∧ ¬q are logically

equivalent.
2 We can show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically

equivalent by developing a series of logical equivalences.
3 We can show that (p ∧ q)→ (p ∨ q) is a tautology.
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Solution
1 ¬(p → q) ≡ ¬(¬p ∨ q) ≡ ¬(¬p) ∧ ¬q ≡ p ∧ ¬q
2 ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) ≡ ¬p ∧ (¬(¬p) ∨ ¬q)
≡ ¬p ∧ (p ∨ ¬q) ≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) ≡ F ∨ (¬p ∧ ¬q)
≡ (¬p ∧ ¬q) ∨ F ≡ ¬p ∧ ¬q

3 (p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) ≡
(¬p ∨ ¬q) ∨ (p ∨ q) ≡ (¬p ∨ p) ∨ (¬q ∨ q) ≡ T ∨ T ≡ T
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Propositional function (Predicate)

Consider P(x) = x < 5
P(x) has no truth values (x is not given a value)
P(1) is true

The proposition 1<5 is true
P(10) is false

The proposition 10<5 is false
Thus, P(x) will create a proposition when given a value
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Propositional function (Predicate)

Consider the following statements:

x > 3, x = y + 3, x + y = z

The truth value of these statements has no meaning without
specifying the values of x, y, z.
Extend propositional logic by the following new features.

Variables: x, y, z, . . .
Predicates (i.e., propositional functions):
P(X ),Q(X ),R(X ),M(X ,Y ), . . .

P(x) denotes the value of propositional function P at x.
The domain is often denoted by U (the universe).
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Predicates

Predicate
Predicate: is a statements involving variables.

Examples
1 x > 3, x = y + 3, x + y = z
2 "computer x is under attack by an intruder,"
3 "computer x is functioning properly,"
4 Let P(X ) denote ”x > 5” and U be the integers. Then

P(8) is true
P(5) is false
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propositional functions with multiple variables

Function with multiple variables
1 P(x , y) denote the statement x + y = 0

P(1, 2) is false, P(1,−1) is true
2 P(x , y , z) denote the statement x + y = z

P(3, 4, 5) is false, P(1, 2, 3) is true.

Remark 2.3
In general, a statement involving the n variables x1, x2, ..., xn can
be denoted by P(x1, x2, ..., xn).
A statement of the form P(x1, x2, ..., xn) is the value of the
propositional function P at the n-tuple (x1, x2, ..., xn), and P is also
called an n-place predicate or a n-ary predicate.
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Quantifiers

A quantifier is "an operator that limits the variables of a
proposition"
Two types

1 Universal, for all ∀.
2 Existential, there exists ∃.

Statement when True? When False?
∀xP(x) p(x) is true There is an x for which

for every x P(x) is false
∃xP(x) there is an x P(x) is false for every x.

for which P(x) is true

Table: Quantifires.
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Quantifiers

Definition 2.11
The universal quantification of P(x) is the statement P(x) for all
values of x in the domain.
The notation ∀x P(x) denotes the universal quantification of

P(x).
Here ∀ is called the universal quantifier.We read ∀x P(x) as "for
all x P(x)" or "for every x P(x)." An element for which P(x) is false
is called a counterexample of ∀xP(x).

Definition 2.12
The existential quantification of P(x) is the proposition "There
exists an element x in the domain such that P(x)."
We use the notation ∃x P(x) for the existential quantification of
P(x). Here ∃ is called the existential quantifier.
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Quantifiers

Example 2.14
Let P(x) denote the statement "x > 3".
What is the truth value of the quantification ∃xP(x), where the
domain consists of all real numbers?
Solution:
Because "x > 3" is sometimes true, for instance, when x = 4 the
existential quantification of P(x), which is ∃xP(x), is true.
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Precedence of Quantifiers

Remark
Precedence of Quantifiers:
The quantifiers ∀ and ∃ have higher precedence than all logical
operators from propositional calculus.
For example,∀xP(x)∨Q(x) is the disjunction of ∀xP(x) and Q(x).
In other words, it means (∀xP(x)) ∨ Q(x) rather than
∀x [P(x) ∨ Q(x)].
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Logical Equivalences Involving Quantifiers

Definition 2.13
Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value no matter
which predicates are substituted into these statements and which
domain of discourse is used for the variables in these propositional
functions. We use the notation S ≡ T to indicate that two
statements S and T involving predicates and quantifiers are
logically equivalent.

Dr. Borhen Halouani Discrete Mathematics (MATH 151)



Outline
The Foundations: Logic and Proofs

Propositional Logic
Propositional Equivalences
Predicates and Quantifiers

Example 2.15
Show that ∀x(P(x) ∧ Q(x)) and ∀xP(x) ∧ ∀xQ(x) are logically
equivalent (where the same domain is used throughout).

Solution 2
First, we show that if ∀x(P(x) ∧ Q(x)) is true,
then ∀xP(x) ∧ ∀xQ(x) is true.
Second, we show that if ∀xP(x) ∧ ∀xQ(x) is true, then
∀x(P(x) ∧ Q(x)) is true.
So, suppose that ∀x(P(x) ∧ Q(x)) is true. This means that if a is
in the domain, then P(a) ∧ Q(a) is true. Hence, P(a) is true and
Q(a) is true. Because P(a) is true and Q(a) is true for every
element in the domain, we can conclude that ∀xP(x) and ∀xQ(x)
are both true. This means that ∀xP(x) ∧ ∀xQ(x) is true.
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Precedence of Quantifiers

Remak A
When all the elements in the
domain can be listed say,
x1, x2, . . . , xn it follows that the
universal quantification ∀xP(x)
is the same as the conjunction
P(x1) ∧ P(x2) ∧ · · · ∧ P(xn),
because this conjunction is true
if and only if P(x1), P(x2), . . . ,
P(xn) are all true.

Example 2.16
What is the truth value of
∀xP(x), where P(x) is the
statement ”x2 < 10” and the
domain consists of the positive
integers not exceeding 4?
Solution:
The domain is {1, 2, 3, 4},
The statement ∀xP(x) is the
same as the conjunction
P(1) ∧ P(2) ∧ P(3) ∧ P(4).
Because P(4), which is the
statement ”42 < 10, ” is false,
it follows that ∀xP(x) is false.
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Precedence of Quantifiers

Remak A
When all the elements in the
domain can be listed say,
x1, x2, . . . , xn it follows that the
universal quantification ∀xP(x)
is the same as the conjunction
P(x1) ∧ P(x2) ∧ · · · ∧ P(xn),
because this conjunction is true
if and only if P(x1), P(x2), . . . ,
P(xn) are all true.

Example 2.16
What is the truth value of
∀xP(x), where P(x) is the
statement ”x2 < 10” and the
domain consists of the positive
integers not exceeding 4?
Solution:
The domain is {1, 2, 3, 4},
The statement ∀xP(x) is the
same as the conjunction
P(1) ∧ P(2) ∧ P(3) ∧ P(4).
Because P(4), which is the
statement ”42 < 10, ” is false,
it follows that ∀xP(x) is false.
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Precedence of Quantifiers

Remak B
When all elements in the
domain can be listed say,
x1, x2, . . . , xn the existential
quantification ∃xP(x) is the
same as the disjunction
P(x1) ∨ P(x2) ∨ · · · ∨ P(xn),
because this disjunction is true
if and only if at least one of
P(x1),P(x2), . . . ,P(xn) is true.

Example 2.17
What is the truth value of
∃xP(x), where P(x) is the
statement ”x2 > 10” and the
domain consists of the positive
integers not exceeding 4?
Solution:
The domain is {1, 2, 3, 4},
The statement ∃xP(x) is the
same as the disjunction
P(1) ∨ P(2) ∨ P(3) ∨ P(4).
Because P(4), which is the
statement ”42 > 10, ” is true,
it follows that ∃xP(x) is true.
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Precedence of Quantifiers

Remak B
When all elements in the
domain can be listed say,
x1, x2, . . . , xn the existential
quantification ∃xP(x) is the
same as the disjunction
P(x1) ∨ P(x2) ∨ · · · ∨ P(xn),
because this disjunction is true
if and only if at least one of
P(x1),P(x2), . . . ,P(xn) is true.

Example 2.17
What is the truth value of
∃xP(x), where P(x) is the
statement ”x2 > 10” and the
domain consists of the positive
integers not exceeding 4?
Solution:
The domain is {1, 2, 3, 4},
The statement ∃xP(x) is the
same as the disjunction
P(1) ∨ P(2) ∨ P(3) ∨ P(4).
Because P(4), which is the
statement ”42 > 10, ” is true,
it follows that ∃xP(x) is true.
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Negating Quantified Expressions

Negation Equivalent When True? When False?
Statement

¬∃xP(x) ∀x¬P(x) For every x , There is an x for
P(x) is false which P(x) is true.

¬∀xP(x) ∃x¬P(x) there is an x P(x) is true
for which P(x) is false for every x.

Table: De Morgan’s Laws for Quantifiers..
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Negating Quantified Expressions

Example 2.18
What are the negations of the statements

1 ∀x(x2 > x)
2 ∃x(x2 = 2)

Solution
1 The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x),

which is equivalent to ∃x¬(x2 > x).
This can be rewritten as ∃x(x2 ≤ x).

2 The negation of ∃x(x2 = 2) is the statement ¬∃x(x2 = 2),
which is equivalent to ∀x¬(x2 = 2).
This can be rewritten as ∀x(x2 6= 2).

The truth values of these statements depend on the domain.
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Negating Quantified Expressions

Example 2.18
What are the negations of the statements

1 ∀x(x2 > x)
2 ∃x(x2 = 2)

Solution
1 The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x),

which is equivalent to ∃x¬(x2 > x).
This can be rewritten as ∃x(x2 ≤ x).

2 The negation of ∃x(x2 = 2) is the statement ¬∃x(x2 = 2),
which is equivalent to ∀x¬(x2 = 2).
This can be rewritten as ∀x(x2 6= 2).

The truth values of these statements depend on the domain.
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Review

Recall that P(x) is a propositional function.
Recall that a proposition is a statement that is either
TRUE or FALSE
P(x) is NOT a proposition
There are TWO ways to make a propositional function into a
proposition:

1 Supply it with a value
For example, P(5) is false, P(0) is true

2 Provide a quantifiaction
For example, ∀xP(x) is false, and ∃xP(x) is true.

Dr. Borhen Halouani Discrete Mathematics (MATH 151)



Outline
The Foundations: Logic and Proofs

Propositional Logic
Propositional Equivalences
Predicates and Quantifiers

Introduction to Proofs

Definition 2.14
A proof
is a sequence of statements. These statements come in two forms:
givens and deductions.

Methods of Proving Theorems
1 Direct Proofs
2 Proof by Contraposition
3 Proofs by Contradiction
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Direct Proof

Definition
A Direct Proof:
is a sequence of statements which are either givens or deductions
from previous statements, and whose last statement is the
conclusion to be proved.

Definition 2.15
The integer n is even if there exists an integer k such that n = 2k,
and n is odd if there exists an integer k such that n = 2k + 1.
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Example of direct proof

Example 2.19
Give a direct proof of the theorem "If n is an odd integer, then n2

is odd."

Solution
1 we assume that n is odd
2 By definition of an odd integer, it follows that n = 2k + 1,

where k is some integer.
3 We can square both sides of the equation n = 2k + 1 to

obtain a new equation that expresses n2.
4 we find that n2 = (2k +1)2 = 4k2 +4k +1 = 2(2k2 +2k) +1.
Conclusion: By the definition of an odd integer, we can
conclude that n2 is an odd integer
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Direct Proof

Remark 2.4
If we writ P(n) is "n is an odd integer" and Q(n) is "n2 is odd."
Note that this theorem states:

∀nP(n)→ Q(n)

.
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Proof by Contraposition

Definition 2.16
Proof by Contraposition (indirect proofs):
An extremely useful type of indirect proof is known as proof by
contraposition.
Proofs by contraposition make use of the fact that the conditional
statement p → q is equivalent to its contrapositive, ¬q → ¬p.

Example 2.20
Prove that if n is an integer and 3n + 2 is odd, then n is odd.
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Proof by Contraposition

Example 2.21
Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution
In a proof by contraposition is to assume that the conclusion of the
conditional statement "If 3n + 2 is odd, then n is odd" is false;
namely, assume that n is even.
Then, by the definition of an even integer, n = 2k for some integer
k. Substituting 2k for n, we find that

3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)

This tells us that 3n + 2 is even and therefore not odd.
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Definition 2.17
The real number r is rational if there exist integers p and q with
q 6= 0 such that r = p

q . A real number that is not rational is called
irrational.

Example 2.22
Prove that the sum of two rational numbers is rational. (Note that
if we include the implicit quantifiers here, the theorem we want to
prove is "For every real number r and every real number s, if r and
s are rational numbers, then r + s is rational.)
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Solution
We first attempt a direct proof.To begin, suppose that r and s are
rational numbers. From the definition of a rational number, it
follows that there are integers p and q, with q 6= 0, such that
r = p

q , and integers t and u, with u 6= 0, such that s = t
u . Can we

use this information to show that r + s is rational? The obvious
next step is to add r = p

q and s = t
u , to obtain

r + s = p
q + t

u = pu+qt
qu . Because q 6= 0 and u 6= 0, it follows that

qu 6= 0 . Consequently, we have expressed r + s as the ratio of two
integers, pu + qt and qu, where qu 6= 0 . This means that r + s is
rational.We have proved that the sum of two rational numbers is
rational; our attempt to find a direct proof succeeded.
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Proofs by Contradiction

Definition 2.18
we can prove that p is true if we can show that ¬p → (r ∧ ¬r) is
true for some proposition r .
Proofs of this type are called proofs by contradiction.

Example 2.23
Give a proof by contradiction of the theorem "If 3n + 2 is odd,
then n is odd."
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Proofs by Contradiction

1 Let p be "3n + 2 is odd" and q be "n is odd." To construct a
proof by contradiction, assume that both p and ¬q are true.

2 assume that 3n + 2 is odd and that n is not odd, so n = 2k.
3 This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).
4 Because 3n + 2 is 2t , where t = 3k + 1, 3n + 2 is even.
5 Because both p and ¬p are true, we have a contradiction.
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