Discrete Mathematics (MATH 151)

Dr. Borhen Halouani

King Saud University
February 9, 2020
(1) Mathematical Induction

Dr. Borhen Halouani

Mathematical Induction

Introduction

- $P(n)$ is a propositional function.
- $P(n)$ is true for all positive integers n
- mathematical induction can be used to prove statements that assert that $P(n)$ is true.

PRINCIPLE OF MATHEMATICAL INDUCTION

To prove that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function, we complete two steps:
(1) basis step, where we show that $\mathrm{P}(1)$ is true
(2) inductive step, where we show that for all positive integers k, if $P(k)$ is true, then $P(k+1)$ is true.
$(P(k) \rightarrow P(k+1)$ is ture for all positive integers k)

Mathematical Induction

Remark 2.1

this proof technique can be stated as
$[P(1) \wedge(\forall k P(k) \rightarrow P(k+1))] \rightarrow \forall n P(n)$

Remark

In a proof by mathematical induction it is NOT assumed that $\mathrm{P}(\mathrm{k})$ is true for all positive integers! It is only shown that if it is assumed that $P(k)$ is true, then $P(k+1)$ is also true.

Mathematical Induction (Example)

Example 2.1

Show that if n is a positive integer, then

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Mathematical Induction (Example)

Solution

- BASIS STEP: we show that $P(1)$ is true, $1=\frac{1(1+1)}{2}$
- INDUCTIVE STEP: If we assume that $\mathrm{P}(\mathrm{k})$ holds for any arbitrary positive integer $k .1+2+3+\cdots+k=\frac{k(k+1)}{2}$, Under this assumption, it must be shown that $\mathrm{P}(\mathrm{k}+1)$ is true, namely, that
$1+2+3+\cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}=\frac{(k+1)(k+2)}{2}$ is also true. When we add $k+1$ to both sides of the equation in $P(k)$, we obtain
$1+2+3+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}$
This last equation shows that $\mathrm{P}(\mathrm{k}+1)$ is true under the assumption that $\mathrm{P}(\mathrm{k})$ is true.
This completes the inductive step.

Mathematical Induction (Example)

Example 2.2

Show that if n is a positive integer, then

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Mathematical Induction (Example)

Solution

- BASIS STEP: $\mathrm{P}(1)$ states that the sum of the first one odd positive integer is 1^{2}. This is true because the sum of the first odd positive integer is 1 . The basis step is complete.
- INDUCTIVE STEP: If we assume that $\mathrm{P}(\mathrm{k})$ holds for any arbitrary positive integer k .
$p(k): 1+3+5+\cdots+(2 k-1)=k^{2}$ we have to show that
$p(k+1): 1+3+5+\cdots+(2 k-1)+(2 k+1)=(k+1)^{2}$ True
$1+3+5+\cdots+(2 k-1)+(2 k+1)=k^{2}+(2 k+1)=(k+1)^{2}$

Mathematical Induction (Example)

Example 2.3

Use mathematical induction to show that

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

for all nonnegative integers n.

Mathematical Induction (Example)

Solution

- BASIS STEP: $\mathrm{P}(0)$ is true because $2^{0}=1=2^{1}-1$. This completes the basis step.
- INDUCTIVE STEP: If we assume that $P(k)$ holds for any arbitrary positive integer k.
$P(k): 1+2+2^{2}+\cdots+2^{k}=2^{k+1}-1$ we have to show that
$P(k+1): 1+2+2^{2}+\cdots+2^{k}+2^{k+1}=2^{k+2}-1$ is True
$1+2+2^{2}+\cdots+2^{k}+2^{k+1}=2^{k+1}-1+2^{k+1}=$
$2 \times 2^{k+1}-1=2^{k+2}-1$
We have completed the inductive step.

Mathematical Induction (Example)

Example 2.4

Use mathematical induction to prove this formula for the sum of a finite number of terms of a geometric progression with initial term a and common ratio r :

$$
\sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+\cdots+a r^{n}=\frac{a r^{n+1}-a}{r-1} \text { where } r \neq 1
$$

for all nonnegative integers n

Mathematical Induction (Example)

Solution

- BASIS STEP: $\mathrm{P}(0)$ is true because, $\frac{a r^{0+1}-a}{r-1}=\frac{a r-a}{r-1}=\frac{a(r-1)}{r-1}=a$
- INDUCTIVE STEP: If we assume that $P(k)$ holds for any arbitrary positive integer k. That is, $P(k)$ is the statement that $P(k): a+a r+a r^{2}+\cdots+a r^{k}=\frac{a r^{k+1}-a}{r-1}$ we have to show that $P(k+1): a+a r+a r^{2}+\cdots+a r^{k}+a r^{k+1}=\frac{a r^{k+2}-a}{r-1}$ $a+a r+a r^{2}+\cdots+a r^{k}+a r^{k+1}=\frac{a r^{k+1}-a}{r-1}+a r^{k+1}$ $=\frac{a r^{k+1}-a}{r-1}+\frac{a r^{k+1}(r-1)}{r-1}=\frac{a r^{k+1}-a+a r^{k+2}-a r^{k+1}}{r-1}=\frac{a r^{k+2}-a}{r-1}$
So if the inductive hypothesis $P(k)$ is true, then $P(k+1)$ must also be true. This completes the inductive argument.

Mathematical Induction (Example)

Example 2.5

Use mathematical induction to show that if n is a positive integer, then

$$
1+4+9+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Mathematical Induction (Example)

Solution

- BASIS STEP: $P(1)$ is true.
- INDUCTIVE STEP: If we assume that $P(k)$ holds for any arbitrary positive integer k. That is, $P(k)$ is the statement that $P(k): \quad 1+4+9+\cdots+k^{2} \quad=\frac{k(k+1)(2 k+1)}{6}$
and we have to show that:

$$
\begin{aligned}
& P(k+1): 1+4+9+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6} \\
& 1+4+9+\cdots+k^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& \frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

This last equation shows that $\mathrm{P}(\mathrm{k}+1)$ is true under the assumption that $P(k)$ is true. This completes the inductive step.

Mathematical Induction (Example)

Example 2.6

Use mathematical induction to show that if n is a positive integer, then

$$
1.2^{1}+2.2^{2}+3.2^{3}+\cdots+n .2^{n}=2+(n-1) \cdot 2^{n+1}
$$

Mathematical Induction (Example)

Solution

- BASIS STEP: $P(1)$ is true.
- INDUCTIVE STEP: If we assume that $P(k)$ holds for any arbitrary positive integer k. That is, $\mathrm{P}(\mathrm{k}): 1.2^{1}+2.2^{2}+3.2^{3}+\cdots+k .2^{k}=2+(k-1) .2^{k+1}$ and we have to show that $\mathrm{P}(\mathrm{k}+1)$ is true

$$
\begin{aligned}
& 1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}+\cdots+k \cdot 2^{k}+(k+1) \cdot 2^{k+1}= \\
& 2+(k-1) \cdot 2^{k+1}+(k+1) \cdot 2^{k+1}= \\
& 2+[(k-1)+(k+1)] \cdot 2^{k+1}=2+2 \cdot k \cdot 2^{k+1}=2+k \cdot 2^{k+2}
\end{aligned}
$$

This last equation shows that $\mathrm{P}(\mathrm{k}+1)$ is true under the assumption that $P(k)$ is true. This completes the inductive step.

Strong Induction

STRONG INDUCTION

To prove that $\mathrm{P}(\mathrm{n})$ is true for all positive integers n , where $P(n)$ is a propositional function, we complete two steps:
BASIS STEP: We verify that the proposition $P(1)$ is true.
INDUCTIVE STEP: We show that the conditional statement $[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ is true for all positive integers k .

Strong Induction(Example)

Example 2.7

Show that if n is an integer greater than 1, then n can be written as the product of primes.

Solution

BASIS STEP: $\mathrm{P}(2)$ is true, because 2 can be written as the product of one prime, itself.
INDUCTIVE STEP: The inductive hypothesis is the assumption that $\mathrm{P}(\mathrm{j})$ is true for all integers j with $2 \leq j \leq k$, that is, the assumption that j can be written as the product of primes whenever j is a positive integer at least 2 and not exceeding k.

Mathematical Induction (Example)

Solution

To complete the inductive step, it must be shown that $P(k+1)$ is true under this assumption, that is, that $k+1$ is the product of primes. There are two cases to consider, namely, when $k+1$ is prime and when $k+1$ is composite. If $k+1$ is prime, we immediately see that $P(k+1)$ is true. Otherwise, $k+1$ is composite and can be written as the product of two positive integers a and b with $2 \leq a \leq b<k+1$. Because both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to write both a and b as the product of primes. Thus, if $k+1$ is composite, it can be written as the product of primes, namely, those primes in the factorization of a and those in the factorization of b.

Review and Examples

Use Mathematical Induction to show that if n is a positive integer, then
(1) $1.2^{1}+2.2^{2}+3.2^{3}+\cdots+n 2^{n}=2+(n-1) 2^{n+1}$
(2) $3+3.4+3.4^{2}+\cdots+3.4^{n-1}=4^{n}-1 \quad n \geq 1$
(3) $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Strong Induction(Example)

Example 2.8

Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:
$a_{1}=3, a_{2}=6, \quad a_{n}=a_{n-1}+a_{n-2}: \forall n \geq 3$
prove that $3 \mid a_{n}$ for all positive integer n.

Solution

Let $P(n)$ be the proposition,
$P(n): 3 \mid a_{n}, \forall n \geq 1 \Rightarrow a_{n}=3 C: \quad C \in \mathbb{N}$
(1) Basis step $P(1): 3 \mid a_{1}=3 \Rightarrow P(1)$ is true.

$$
P(2): 3 \mid a_{2}=6 \Rightarrow P(2) \text { is true. }
$$

(2) Inductive step: We assume that:
$P(1), P(2), \ldots, P(k-2), P(k-1), P(k)$ are all true for $k \geq 2$ Under this assumption, it must be shown that $P(k+1)$ is also true.

Strong Induction(Example)

a_{k-1}, a_{k} both are true,
$P(k): 3 \mid a_{k} \Rightarrow a_{k}=3 C_{1}: C_{1} \in \mathbb{N}$
$P(k-1): 3 \mid a_{k-1} \Rightarrow a_{k-1}=3 C_{2}: C_{2} \in \mathbb{N}$
$a_{k+1}=a_{k}+a_{k-1}=3 C_{1}+3 C_{2}=3\left(C_{1}+C_{2}\right)=3 C$;
$C=\left(C_{1}+C_{2}\right) \in \mathbb{N}$
$a_{k+1}=3 c \Rightarrow 3 \mid a_{k+1} \Rightarrow P(k+1)$ is true.
Then $P(n)$ is true $\forall n \geq 1$

