King Saud University: Math. Dept. Math-254

Semester II 1437-38 H Final Exam. Time: 3 Hours

Question 1:
(a) Find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-1} to the solution of $x e^{x}=1$ lying in the interval $[0.5,1]$ using the bisection method. Find the approximation to the root with this degree of accuracy.
(b) Show that Newton's iterative method for computing $(a)^{1 / k}$ is given by

$$
x_{n+1}=\frac{1}{k}\left[(k-1) x_{n}+\frac{a}{x_{n}^{k-1}}\right], \quad n \geq 0
$$

Use this iterative scheme to find second approximation of $(32)^{1 / 5}, x_{0}=1.5$. Compute absolute error.
(c) Let $f(x)=e^{(x+2)}$ and $x_{0}=-0.2, x_{1}=-0.1, x_{2}=0, x_{3}=0.1, x_{4}=0.2, x_{5}=0.3$. If $p_{4}(x)=7.7679002$ and $f[-0.2,-0.1,0,0.1,0.2,0.3]=0.0649$, then find the approximation of $e^{(2.05)}$ using fifth degree Newton's interpolating polynomial. Compute error bound and absolute error.

Question 2:
(a) Let $f(x)=x^{3}+1$ defined on the interval $[0.1,0.2]$. Find the value of unknown point $\eta(x)$ such that the error term for the simple Trapezoidal rule is equal to the exact error.
(b) Use the best composite integration formula to approximate the integral $\int_{0}^{1} \frac{d x}{7-2 x}$, with $h=0.25$. Estimate the error bound.
(c) The function $f(x)$ satisfies a given equation $f^{\prime \prime}(x)=x^{2} f(x)$ and satisfy the conditions $f(0.5)=2, f(0.7)=4$. Use the central-difference formula to find approximation of $f^{\prime \prime}(0.6)$.

Question 3:

Consider the following linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

(a) Use simple Gauss elimination to find A^{-1} and then use it to find a unique solution.
(b) Find the number of iterations k needed to get an accuracy within 10^{-4} for solving the given system using Gauss-Seidel iterative method when $\mathbf{x}^{(\mathbf{0})}=[0.5,0.3,0.2]^{T}$.
(c) If $f(x)=\frac{1}{x}$, then show that $f[1,1,1,2]=-\frac{1}{2}$.

Solution Q1(a). Here $a=0.5, b=1$ and $k=1$, then

$$
n \geq \frac{\ln \left[10^{1}(1-0.5)\right]}{\ln 2} \approx 2.3219, \quad n=3
$$

The given function $f(x)=x e^{x}-1$ is continuous on $[0.5,1.0]$, so starting with $a_{1}=0.5$ and $b_{1}=1$, we compute:

$$
\begin{array}{ll}
a_{1}=0.5: & f\left(a_{1}\right)=-0.1756 \\
b_{1}=1: & f\left(b_{1}\right)=1.7183
\end{array}
$$

since $f(0.5) f(1)<0$, so that a root of $f(x)=0$ lies in the interval $[0.5,1]$. Then

$$
c_{1}=\frac{a_{1}+b_{1}}{2}=0.75 ; \quad f\left(c_{1}\right)=0.5878
$$

Hence the function changes sign on $\left[a_{1}, c_{1}\right]=[0.5,0.75]$. To continue, we squeeze from right and set $a_{2}=a_{1}$ and $b_{2}=c_{1}$. Then

$$
c_{2}=\frac{a_{2}+b_{2}}{2}=0.625 ; \quad f\left(c_{2}\right)=0.1677
$$

Finally, we have in the similar manner as

$$
c_{3}=\frac{a_{3}+b_{3}}{2}=0.5625
$$

Solution Q1(b). Given $x=a^{1 / k}$, so

$$
x^{k}-a=0
$$

Let

$$
f(x)=x^{k}-a \quad \text { and } \quad f^{\prime}(x)=k x^{k-1}
$$

Hence, assuming an initial estimate to the root, say, $x=x_{0}$, we get

$$
x_{1}=x_{0}-\frac{\left(x_{0}^{k}-a\right)}{k x_{0}^{k-1}}=x_{0}-\frac{x_{0}^{k}}{k x_{0}^{k-1}}+\frac{a}{k x_{0}^{k-1}}=\frac{1}{k}\left[(k-1) x_{0}+\frac{a}{x_{0}^{k-1}}\right], \quad n \geq 0
$$

In general, we have

$$
x_{n+1}=\frac{1}{k}\left[(k-1) x_{n}+\frac{a}{x_{n}^{k-1}}\right], \quad n \geq 0
$$

Since we want the approximations of the fifth root of number 32 , so we take $a=32$ and $k=5$. Given the initial approximation $x_{0}=1.5$, then by using this iterative formula, we get

$$
x_{1}=2.4642 \quad \text { and } \quad x_{2}=2.1449
$$

and absolute error is

$$
\text { Abs }- \text { Error }=|2-2.1449|=0.1449
$$

Solution Q1(c). Since the fifth-degree Newton polynomial $p_{5}(x)$ is defined as

$$
f(x)=p_{5}(x)=p_{4}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

and using the given data points, we have
$e^{2.05} \approx p_{5}(0.05)=7.7679002+(0.05+0.2)(0.05+0.1)(0.05-0.0)(0.05-0.1)(0.05-0.2)(0.0649)=7.7679011$.

To compute an error bound for the approximation of the given function in the interval $[-0.2,0.3]$, we use the following error formula

$$
\left|f(x)-p_{5}(x)\right| \leq \frac{M}{6!}|(0.05+0.2)(0.05+0.1)(0.05-0.0)(0.05-0.1)(0.05-0.2)(0.05-0.3)|
$$

Since

$$
\left|f^{(6)}(\eta(x))\right| \leq M=\max _{-0.2 \leq x \leq 0.3}\left|f^{(6)}(x)\right|=\max _{-0.2 \leq x \leq 0.3}\left|e^{x+2}\right|=9.9742
$$

So

$$
\left|f(0.05)-p_{5}(0.05)\right| \leq \frac{9.9742}{720}\left(3.5156 \times 10^{-6}\right)=4.8702 \times 10^{-8} .
$$

which is desired error bound. Also, we have to compute absolute error as

$$
\left|f(0.05)-p_{5}(0.05)\right|=\left|e^{2.05}-p_{5}(0.05)\right|=|7.7679011-7.7679011|=0
$$

Solution Q2(a). Given $f(x)=x^{3}+1$, and $[a, b]=[0.1,0.2]$, we use the formula of the Trapezoidal rule for $h=0.1$, as follows

$$
\text { ApproxValue }=\frac{0.1}{2}[f(0.1)+f(0.2)]=\frac{0.1}{2}\left[\left[(0.1)^{3}+1\right]+\left[(0.2)^{3}+1\right]\right]=0.10045
$$

We know that
ExactValue $=\int_{0.1}^{0.2}\left(x^{3}+1\right) d x=\left.\left(x^{4} / 4+x\right)\right|_{0.1} ^{0.2}=\left[(0.2)^{4} / 4+0.2\right]-\left[(0.1)^{4} / 4+0.1\right]=0.100375$, so we have the error

$$
E=(\text { ExactValue })-(\text { ApproxValue })=0.100375-0.10045=-0.000075 .
$$

since the second derivative of the given function is $f^{\prime \prime}(x)=6 x$, so by using the local error for the T Since the fourth derivative of the function is

$$
f^{(4)}(x)=\frac{384}{(7-2 x)^{5}} .
$$

and

$$
M=\max _{0 \leq x \leq 1}\left|f^{(4)}(x)\right|=0.1229
$$

Thus the error bound is

$$
\left|E_{S_{4}}(f)\right| \leq \frac{(0.1229)(0.25)^{4}}{180}=2.667 \times 10^{-6}
$$

Solution Q2(c). Let $x_{0}=\left(x_{1}-h\right)=0.5, x_{1}=0.6$, and $x_{2}=\left(x_{1}+h\right)=0.7$, gives $h=0.1$, so

$$
f^{\prime \prime}(0.6)=(0.6)^{2} f(0.6) \approx \frac{f(0.5)-2 f(0.6)+f(0.7)}{0.01}
$$

Using error term of Trapezoidal rule, we have

$$
-0.000075=-\frac{(0.1)^{3}}{12}(6 \eta(x))
$$

gives the value of $\eta(x)=0.15$.

Solution Q2(b). Since $h=0.25$, so $n=\frac{1-0}{0.25}=4$. By using the Simpson's composite formula, we have

$$
\int_{0}^{1} f(x) d x \approx \frac{0.25}{3}[f(0)+4[f(0.25)+f(0.75)]+2 f(0.5)+f(1)]
$$

Thus

$$
\int_{0}^{1} f(x) d x \approx \frac{0.25}{3}[0.1429+4[0.1539+0.1818]+2(0.16667)+0.2] \approx 0.1682
$$

which is equal to

$$
\begin{aligned}
(0.01)(0.6)^{2} f(0.6) & \approx[2-2 f(0.6)+4] \\
f(0.6) & \approx 2.9946 .
\end{aligned}
$$

Thus

$$
f^{\prime \prime}(0.6) \approx \frac{[2-2(2.9946)+4]}{0.01} \approx 1.0781
$$

Solution Q3(a). Suppose that the inverse $A^{-1}=B$ of the given matrix exists and let

$$
A B=\left(\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{I} .
$$

Now to find the elements of the matrix B, we apply the simple Gaussian elimination on the augmented matrix

$$
\begin{aligned}
& {[A \mid \mathbf{I}]=\left(\begin{array}{rrrrrrr}
4 & -1 & 0 & \vdots & 1 & 0 & 0 \\
-1 & 3 & 1 & \vdots & 0 & 1 & 0 \\
0 & 1 & 3 & \vdots & 0 & 0 & 1
\end{array}\right) .} \\
& \left(\begin{array}{rrr|rrr}
4 & -1 & 0 & \vdots & 1 & 0 \\
0 \\
0 & 11 / 4 & 1 & \vdots & 1 / 4 & 1 \\
0 \\
0 & 0 & 29 / 11 & \vdots & -1 / 11 & -4 / 11
\end{array}\right) .
\end{aligned}
$$

We solve the first system

$$
\left(\begin{array}{rrr}
4 & -1 & 0 \\
0 & 11 / 4 & 1 \\
0 & 0 & 29 / 11
\end{array}\right)\left(\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 / 4 \\
-1 / 11
\end{array}\right)
$$

which gives $b_{11}=8 / 29, b_{21}=3 / 29, b_{31}=-1 / 29$. Similarly, the solution of the second linear system

$$
\left(\begin{array}{rrr}
4 & -1 & 0 \\
0 & 11 / 4 & 1 \\
0 & 0 & 29 / 11
\end{array}\right)\left(\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
-4 / 11
\end{array}\right)
$$

which gives $b_{12}=3 / 29, b_{22}=12 / 29, b_{32}=-4 / 29$. Finally, the solution of the third linear system

$$
\left(\begin{array}{rrr}
4 & -1 & 0 \\
0 & 11 / 4 & 1 \\
0 & 0 & 29 / 11
\end{array}\right)\left(\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and it gives $b_{13}=-1 / 29, b_{23}=-4 / 29, b_{33}=11 / 29$. Hence the elements of the inverse matrix B are

$$
B=A^{-1}=\frac{1}{29}\left(\begin{array}{rrr}
8 & 3 & -1 \\
3 & 12 & -4 \\
-1 & -4 & 11
\end{array}\right)
$$

which is the required inverse of the given matrix A.
Thus

$$
\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{29}\left(\begin{array}{rrr}
8 & 3 & -1 \\
3 & 12 & -4 \\
-1 & -4 & 11
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
13 / 29 \\
23 / 29 \\
2 / 29
\end{array}\right)=\left(\begin{array}{l}
0.4483 \\
0.7931 \\
0.0690
\end{array}\right)
$$

Solution Q3(b). Since the Gauss-Seidel iteration matrix is defined as

$$
T_{G}=-(D+L)^{-1} U=\left(\begin{array}{ccc}
0 & -\frac{1}{4} & 0 \\
0 & -\frac{1}{12} & \frac{1}{3} \\
0 & \frac{1}{36} & -\frac{1}{9}
\end{array}\right) .
$$

Then the l_{∞} norm of the matrix T_{G} is

$$
\left\|T_{G}\right\|_{\infty}=\max \left\{\frac{1}{4}, \frac{5}{36}, \frac{5}{12}\right\}=\frac{5}{12}<1 .
$$

The Gauss-Seidel method for the given system is

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{4}\left[1+x_{2}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{3}\left[2+x_{1}^{(k+1)}-x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{3}[1
\end{aligned}
$$

Starting with initial approximation $x_{1}^{(0)}=0.5, x_{2}^{(0)}=0.3, x_{3}^{(0)}=0.2$, and for $k=0$, we obtain the first approximation as

$$
\mathbf{x}^{(\mathbf{1})}=[0.325,0.708,0.097]^{T} .
$$

To find the number of iterations, we do as

$$
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{k})}\right\| \leq \frac{\left\|T_{G}\right\|^{k}}{1-\left\|T_{G}\right\|}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(\mathbf{0})}\right\| \leq 10^{-4}
$$

it gives

$$
\frac{(5 / 12)^{k}}{1-5 / 12}(0.408) \leq 10^{-4}
$$

Taking \ln on both sides and simplify, we obtain

$$
k \geq 10.1117, \quad k=11
$$

Solution Q3(c). Given $f(x)=\frac{1}{x}$ and so $f^{\prime}(x)=-\frac{1}{x^{2}}, f^{\prime \prime}(x)=\frac{2}{x^{3}}$. Thus $f[1,1,1,2]$ gives:

$$
\begin{aligned}
f[1,1,1,2] & =\frac{f[1,1,2]-f[1,1,1]}{2-1}=f[1,1,2]-\frac{f^{\prime \prime}(1)}{2!} \\
& =\frac{f[1,2]-f[1,1]}{2-1}--\frac{f^{\prime \prime}(1)}{2} \\
& =\frac{f[2]-f[1]}{2-1}-\frac{f^{\prime}(1)}{1!}--\frac{f^{\prime \prime}(1)}{2} \\
& =\frac{1}{2}-\frac{1}{1}+1-\frac{2}{2} \\
& =-\frac{1}{2}
\end{aligned}
$$

