

Final Exam, S1 1439/1440 M 380 – Stochastic Processes Time: 3 hours – Male Section

Answer the following questions:

Q1: [4+4]

(a) Suppose $X \sim Bin(p, N)$ and $N \sim Poisson(\lambda)$. Find the marginal probability mass function for X and determine the mean for X.

(b) For the Markov process $\{X_i\}$, t=0,1,2,...,n with states $i_0, i_1, i_2, \dots, i_{n-1}, i_n$

Prove that: $Pr\{X_0 = i_0, X_1 = i_1, X_2 = i_2, ..., X_n = i_n\} = p_n P_{n,n} P_{n,n} ... P_{n,n}$ where $p_n = pr\{X_0 = i_0\}$

Q2: [2+4]

a) A Markov chain {X,} on the states 0, 1, 2 has the transition probability matrix

Find $pr\{X_3 = 1 | X_0 = 0\}$

b) Consider a spare parts inventory model in which either 0, 1, or 2 repair parts are demanded in any period, with $\Pr\{\xi_n=0\}=0.5$, $\Pr\{\xi_n=1\}=0.4$, $\Pr\{\xi_n=2\}=0.1$ and suppose s=0 and S=2. Determine the transition probability matrix for the Markov chain $\{X_n\}$, where X_n is defined to be the quantity on hand at the end of period n.

Q3: [8]

An airline reservation system has two computers, only one of which is in operation at any given time. A computer may break down on any given day with probability p. There is a duplicate repair facility that takes 2 days to restore a computer to normal. The facilities are such that both two computers can be repaired simultaneously. Form a Markov chain by taking as states the pairs (x,y), where x is the number of machines in operating condition at the end of a day and y is 1 if a day's labor has been expended on a machine not yet repaired and 0 otherwise. Also, find the system availability.

Q4: [5+4]

(a) Let $\{X_n\}$, n=1,2,... be a Markov chain with transition probability matrix

$$\begin{array}{c|cccc} O & D & R \\ \hline O & 0.9 & 0.1 & 0 \\ \mathbf{P} = D & 0 & 0.9 & 0.1 \\ R & 1 & 0 & 0 \end{array}$$

Where X_n denote the condition of a machine of nth period with $X_n = 1$ means "operating", $X_n = 2$ means "deterioration" and $X_n = 3$ means "repairing". Find each of the following:

- i) $Pr\{X_4 = 1\}$, knowing that the process starts in state $X_0 = 1$
- ii) The limiting distribution
- iii) The long run rate of repairs per unit time.
- (b) Messages arrive at a telegraph office as a Poisson process with mean rate of 3 messages per hour.
- (i) What is the probability that no messages arrive during the morning hours 8:00 A.M. to noon?
- (ii) What is the distribution of the time at which the first afternoon message arrives?

Q5: [5+4]

(a) If X(t) represents a size of a population where X(0)=1, using the following differential equations

$$\frac{dp_0(t)}{dt} = -\lambda_0 p_0(t) \tag{1}$$

$$\frac{dp_{0}(t)}{dt} = -\lambda_{0}p_{0}(t) \tag{1}$$

$$\frac{dp_{n}(t)}{dt} = \lambda_{n-1}p_{n-1}(t) - \lambda_{n}p_{n}(t), \ n=1,2,3, ... \tag{2}$$

Prove that:

 $X(t) \sim \text{geom}(p), \ p = e^{-\lambda t} \text{ when } \lambda_0 = 0 \text{ and } \lambda_n = n\lambda$, and then find the mean and variance of this process.

(b) Let X(t) be a Yule process that is observed at a random time U, where U is uniformly distributed over [0,1). Show that $pr\{X(U)=k\}=p^k/(\beta k)$ for k=1,2,..., with $p=1-e^{-\beta}$. Model answer of final Exam M 380 - Stochastic progres \$1 M 1439/1440

b) pr { Xo = 6, X, = 1, X2 = 12, --; Xn = in} PI a) X~ Bin (P,N), 8 = pr {X_0 = 10, X_1 = 1, X_1 = 12, ..., X_n = 1, -1} N~ Poisson (A) The Conditional prob. mass for is · pr (Xn = in Xo=10, X1=1, X2=12, ...) $P_{XN}(x|n) = {n \choose x} p^{x} (1-p)^{n-x}$ (m/ /m.= /n.1) , x = 0, 1, 2, ..., npr(Xn=in/X=i, X1=i, ..., Xn=in-1) and the marginal prob. mas for = pr {Xn=in | Xn==in=} $P_{N}(n) = \frac{e^{\lambda_{1}^{2}} \lambda_{1}^{n}}{n!}, n = 0, 1, 2, ...$ = P. in Defn of Markov process pr (X = x) = = P (x |n) P (n) pr [Xo=6, X1=1, X2=12, --, Xn=1n] $pr(X=x)=\overline{Z(x)}p^{x}(1-p)^{n-x}e^{\frac{2}{n}x^{n}}$ = $Pr\{X_0 = i_0, X_1 = i_1, X_1 = i_2, \dots, X_{n-1} = i_{n-1}\}$ By repeating this orgument 1-1 tim $\frac{1}{\sqrt{(1-p)^{1-x}}} p_r \left\{ X_0 = i_0, X_1 = i_1, X_2 = i_2, \dots, X_n = i_n \right\}$ ne = P, P, P, P, P, in I where P. = prlX = 103 for initial dist ? . : p(X=2) = (70) = 1 = X~ Poisson ()p) with men AP

	<u>Q3</u>	$\langle \rangle$				
		(2,0)	(1,0)	(u,v)	(0,	U
	(40)	9.	P	Ò	0	
	(1,9)	0	0	F	0	
7	(41)	9	Ρ	0		
8	(0,1)	0	0	1	j	(4)
	(.)	1	T	T,	113	
	ı	TO	"/ - 1	$\Gamma \to \mathcal{I}$	$=\frac{p}{a}$	76
	⇒ 9.1	6+4	ار = الم سه	5 = T	Tp	T
	18	T6 + PT		学 "	7	
	·· TJ =	T2=	产型	= [F	27	(2)
	1 00	(= T)		3=9	- 40	6
	1 45+	- 111 + 1	4	-1	6	0
	- II	, = 1	t PtP			
	⇒[]	5 =-	م ان ان ا	, i	Y)
	1		1771	is	_	tenst
	The li	mitting	esses.	- 17	مرده	1 (Holyan)
	T=(14/4/	11/1	7	ロコ O.e.a	host
						Least
	A. 60	77.7		,		/.
	_	1- T/3			1+1	
	=	1	Person.		1404	n
	= 1 = (An	treat	epaki	fa cil	hty)	
	(12		1	=	#=	

i) pr [Xy=1], X = 1 = pr[X=1 | X = 1] = P. P= [0.4 0.1 0] [0.9 0.1 0]
0.9 0.1 0 0 0 0.9 0.1 $\rho^{2} = \begin{bmatrix} 0.81 & 0.18 & 0.017 \\ 0.1 & 0.81 & 0.04 \\ 0.4 & 0.1 & 0 \end{bmatrix}$ Py = [0.91 0.18 0.01] [0.1] Py = [0.6831] ii) T = 0.9 T1+15 => 15=0-1 T1 1 h=0.15+0.95= F=5 S:T+15-1-76=祭 文化华 不士 : limiting Atto is (Si to to) 10) Por jun Tate of Topasies per senior of time = 5= ==

(i) eng dite with production

(ii) eng dite with production

(iii) eng dite with production

(

= a) X(0) =1 intil andico => f, (0) =1 $\Rightarrow P_{n}(0) = 1$ $\Rightarrow P_{n}(0) = \begin{cases} 1 & \text{in } = 1 \\ 0 & \text{otherwise} \end{cases}$ 1) =0 () dh =0 · · [6t) = 0 / (3) (2) d/ht = 7 / (t) - 7/6/t) 1/2 + 7, 6 (t) = 7, 1/4) 7 =n2, 7 = (0-1)2 :. dhit +nah(t)=(n-1)2 ha(t) Multiply both sides by enat en 2t [d/alt + n 2 / (t) = (n-1) 2 / (t) ente : de [[,(t) e] = (n-1)] [, (t) en it => [d[[n=1]x]=(n-1)x][n-1(2) & [n-1]x] $\left\| \int_{n}^{\infty} \int_{n}^{\infty} e^{n\lambda x} \int_{n}^{t} = (n-1)\lambda \int_{n-1}^{\infty} \int_{n}^{\infty} \int_{n}^{\infty} e^{n\lambda x} dx$ Ph(t) = = -n lt [pho) + (n-1)) pho pho day

which is a recurrence relation of not assistance

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t) + 0 \right] = e^{\lambda t}$$

$$f(t) = e^{\lambda t} \left[f(t)$$