Final Exam, S1 1439/1440
M 380 - Stochastic Processes
Time: 3 hours - Female Section

Answer the following questions:

Q1: $[4+4]$
(a) Suppose X and Y are jointly distributed random variables having the density function $f_{X Y}(\mathrm{x}, \mathrm{y})=\frac{1}{\mathrm{y}} e^{-(\mathrm{x} / \mathrm{y})-\mathrm{y}}$ for $\mathrm{x}, \mathrm{y}>0$. Find the conditional probability of X given that $\mathrm{Y}=\mathrm{y}$ and determine the expected value for X .
b) For the Markov process $\left\{X_{t}\right\}, t=0,1,2, \ldots, n$ with states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$

Prove that: $\operatorname{Pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}, \mathbf{X}_{1}=\mathrm{i}_{1}, \mathbf{X}_{2}=\mathrm{i}_{2}, \ldots, \mathbf{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{i_{0}} P_{i_{0} i_{1}} P_{i_{i}} \ldots P_{i_{n-1} i_{n}}$ where $p_{i_{0}}=\operatorname{pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}\right\}$
Q2: $[2+4]$
a) Let X_{n} denote the quality of the nth item that produced in a certain factory with $X_{n}=0$ meaning "good" and $\mathrm{X}_{n}=1$ meaning "defective". Suppose that $\left\{\mathrm{X}_{n}\right\}$ be a Markov chain whose transition matrix is

$$
P=\begin{gathered}
0 \\
0 \| 0.98 \\
1
\end{gathered}\left\|\begin{array}{cc}
0.02 \\
0.14 & 0.86
\end{array}\right\|
$$

In the long run, what is the probability that an item produced by this system is good?
b) Consider a spare parts inventory model in which either 0,1 , or 2 repair parts are demanded in any period, with $\operatorname{Pr}\left\{\xi_{n}=0\right\}=0.4, \operatorname{Pr}\left\{\xi_{n}=1\right\}=0.3, \operatorname{Pr}\left\{\xi_{n}=2\right\}=0.3$ and suppose $\mathrm{s}=0$ and $\mathrm{S}=3$. Determine the transition probability matrix for the Markov chain $\left\{\mathrm{X}_{n}\right\}$, where X_{n} is defined to be the quantity on hand at the end of period n . Q3: [8]

An airline reservation system has two computers, only one of which is in operation at any given time. A computer may break down on any given day with probability p. There is a single repair facility that takes 2 days to restore a computer to normal. The facilities are such that only one computer at a time can be dealt with. Form a Markov chain by taking as states the pairs (x,y),
where x is the number of machines in operating condition at the end of a day and y is 1 if a day's labor has been expended on a machine not yet repaired and 0 otherwise. Also, find the system availability.

Q4: $[5+4]$
(a) From purchase to purchase, a particular customer switches brands among products A, B, and C according to a Markov chain whose transition probability matrix is

	A	B	C
A	0.6	0.2	0.2
$\mathrm{P}=\mathrm{B}$	0.1	0.7	0.2
		0.1	0

In the long run, what fraction of time does this customer purchase brand A ?
(b) Let $\mathrm{X}(\mathrm{t})$ be a Yule process that is observed at a random time U , where U is uniformly distributed over $[0,1)$. Show that $\operatorname{pr}\{\mathbf{X}(\mathbf{U})=k\}=p^{k} /(\beta k)$ for $k=1,2, \ldots$, with $p=1-e^{-\beta}$.

Q5: [5+4]
(a) Using the differential equations

$$
\begin{align*}
& \frac{d p_{0}(t)}{d t}=-\lambda p_{0}(t) \tag{1}\\
& \frac{d p_{n}(t)}{d t}=\lambda p_{n-1}(t)-\lambda p_{n}(t), \mathrm{n}=1,2,3, \ldots \tag{2}
\end{align*}
$$

where all birth parameters are the same constant λ with initial condition $\mathrm{X}(0)=0$,
Show that $p_{n}(t)=\frac{(\lambda t)^{n} e^{-\lambda t}}{n!}, n=0,1,2, \ldots$
(b) Let X and Y be independent Poisson distributed random variables with parameters α and β, respectively. Determine the conditional distribution of X , given that $\mathrm{N}=\mathrm{X}+\mathrm{Y}=\mathrm{n}$.

