Final Exam, S2 1438/1439
M 380 — Stochastic Processes
Time: 3 hours

King Saud University
College of Sciences
Department of Mathematics

X}

Choose only 5 questions from the following;:
Q1: [4+4]

(a) For the Markov process {X,}, t=0,1,2,..,n with states ig,ij,5, ...\, 4,1

n-11"n

Prove that: Pr{X,=iy,X, =i, X, =i,, ... X, =i} =p P P, .. P where p_=pr{X,=i,}

by

(b) A Markov chain X;,X,,X,,.. has the transition probability matrix

0O 1 2
0/0.7 0.2 0.1
P=110 06 04
2105 0 05

Find pr{X,=1 X,=1|X,=0}.

Q2: [4+4]
Consider the Markov chain whose transition probability matrix is given by

o 1 2

oftr o o o
_1{0.1 06 01 02
~2[02 03 04 01
30 0o o0 1

(a) Starting in state 1, determine the probability that the Markov chain ends in
state 0.

(b) Determine the mean time to absorption.

Q3: [5+3]



(a) A Markov chain X,,X;,X,, .. has the transition probability matrix

0o 1 2

0/0.3 0.2 05
P=1]05 0.1 04
2|0.5 0.2 0.3

Every period that the process spends in state 0 incurs a cost $2. Every period that
the process spends in state 1 incurs a cost of $5. Every period that the process
spends in state 2 incurs a cost of $3. What is the long run cost per period
associated with this Markov chain?

(b) Let X(t) be a Yule process that is observed at a random time U, where U is
uniformly distributed over [0,1). Show that pr{X(U)=k}=p"/(Bk) for k=12,.., with
p=l-e’.

Q4: [4+4]

(a) Let {X,}be a Markov chain with state space S={1,2} has the transition

e . 05 0.5 ..
probability matrix P=H Lol find pr{X,;=2|X,=1.

(b) The probability of the thrower winning in the dice game is p=0.4929. Suppose
player A is the thrower and begins the game with $5, and player B, his opponent,
begins with $10. What is the probability that player A goes bankrupt before player
B? Assume that the bet is $1 per round.

Q5: [8]

Suppose that the weather on any day depends on the weather conditions for the
previous 2 days. Suppose also that if it was sunny today and yesterday, then it will
be sunny tomorrow with probability 0.8; if it was sunny today but cloudy
yesterday, then it will be sunny tomorrow with probability 0.6; if it was cloudy
today but sunny yesterday, then it will be sunny tomorrow with probability 0.4; if
it was cloudy for the last 2 days, then it will be sunny tomorrow with probability
0.1. Transform this model into a Markov chain, and then find the transition
probability matrix. Find also the long run fraction of days in which it is sunny.



Q6: [4+4]

(a) Using the differential equations

dpo(t)__
T Ap,(t) 1)

) gy, 0=, 12123, .. @)

where all birth parameters are the same constant A with initial condition X(0)=0,

(ﬂt)ne—ﬂ.z‘,
nl

Show that p (t)= , n=012,..

(b) Suppose that customers arrive at a facility according to a Poisson process
having rate1=2. Let X(t) be the number of customers that have arrived up to time
t. Determine the following conditional probabilities

pr{X(3)=6|X@®) =2} and pr{X()=2|X(3)=6}.
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