

Final Exam, S2 1438/1439 M 380 – Stochastic Processes Time: 3 hours

Choose only 5 questions from the following:

Q1: [4+4]

(a) For the Markov process $\{X_t\}$, t=0,1,2,...,n with states $i_0,i_1,i_2,$... $,i_{n-1},i_n$

 $\text{Prove that: } \Pr \left\{ \mathbf{X}_{0} = \mathbf{i}_{0}, \mathbf{X}_{1} = \mathbf{i}_{1}, \mathbf{X}_{2} = \mathbf{i}_{2}, \, \dots, \mathbf{X}_{n} = \mathbf{i}_{n} \right\} = p_{i_{0}} P_{i_{0}i_{1}} P_{i_{1}i_{2}} \dots \, P_{i_{n-1}i_{n}} \, \text{where } \, \, p_{i_{0}} = \operatorname{pr} \left\{ \mathbf{X}_{0} = \mathbf{i}_{0} \right\}$

(b) A Markov chain X_0, X_1, X_2, \dots has the transition probability matrix

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
0 & 0.7 & 0.2 & 0.1 \\
\mathbf{P} = 1 & 0 & 0.6 & 0.4 \\
2 & 0.5 & 0 & 0.5
\end{array}$$

Find $pr\{X_1 = 1, X_2 = 1 | X_0 = 0\}$.

Q2: [4+4]

Consider the Markov chain whose transition probability matrix is given by

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 & 0 \\ 0.1 & 0.6 & 0.1 & 0.2 \\ 2 & 0.2 & 0.3 & 0.4 & 0.1 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Starting in state 1, determine the probability that the Markov chain ends in state 0.
- (b) Determine the mean time to absorption.

Q3: [5+3]

(a) A Markov chain $X_0, X_1, X_2, ...$ has the transition probability matrix

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
0 & 0.3 & 0.2 & 0.5 \\
\mathbf{P} = 1 & 0.5 & 0.1 & 0.4 \\
2 & 0.5 & 0.2 & 0.3
\end{array}$$

Every period that the process spends in state 0 incurs a cost \$2. Every period that the process spends in state 1 incurs a cost of \$5. Every period that the process spends in state 2 incurs a cost of \$3. What is the long run cost per period associated with this Markov chain?

(b) Let X(t) be a Yule process that is observed at a random time U, where U is uniformly distributed over [0,1). Show that $pr\{X(U)=k\}=p^k/(\beta k)$ for k=1,2,..., with $p=1-e^{-\beta}$.

Q4: [4+4]

- (a) Let $\{X_n\}$ be a Markov chain with state space $S=\{1,2\}$ has the transition probability matrix $\mathbf{P} = \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0 \end{bmatrix}$, find $pr\{X_5 = 2 | X_2 = 1\}$.
- (b) The probability of the thrower winning in the dice game is p=0.4929. Suppose player A is the thrower and begins the game with \$5, and player B, his opponent, begins with \$10. What is the probability that player A goes bankrupt before player B? Assume that the bet is \$1 per round.

Q5: [8]

Suppose that the weather on any day depends on the weather conditions for the previous 2 days. Suppose also that if it was sunny today and yesterday, then it will be sunny tomorrow with probability 0.8; if it was sunny today but cloudy yesterday, then it will be sunny tomorrow with probability 0.6; if it was cloudy today but sunny yesterday, then it will be sunny tomorrow with probability 0.4; if it was cloudy for the last 2 days, then it will be sunny tomorrow with probability 0.1. Transform this model into a Markov chain, and then find the transition probability matrix. Find also the long run fraction of days in which it is sunny.

Q6: [4+4]

(a) Using the differential equations

$$\frac{dp_0(t)}{dt} = -\lambda p_0(t) \tag{1}$$

$$\frac{dp_n(t)}{dt} = \lambda p_{n-1}(t) - \lambda p_n(t), \text{ n=1,2,3, ...} (2)$$

where all birth parameters are the same constant λ with initial condition X(0)=0,

Show that $p_n(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$, n = 0,1,2,...

(b) Suppose that customers arrive at a facility according to a Poisson process having rate $\lambda = 2$. Let X(t) be the number of customers that have arrived up to time t. Determine the following conditional probabilities

$$pr\{X(3) = 6 | X(1) = 2\}$$
 and $pr\{X(1) = 2 | X(3) = 6\}$.

Model Answer For H 380 - Stochastic Processes

$$\frac{g_1}{(a)} pr\{X_0 = b, X_1 = i_1, X_2 = i_2, ..., X_{n-1} = i_{n-1}, X_n = i_n\}$$

$$= pr\{X_0 = b, X_1 = i_1, X_2 = i_2, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = b, X_1 = i_1, ..., X_{n-1} = i_{n-1}\}$$

$$= pr\{X_0 = i_1, X_1 = i_1\}$$

$$= pr\{X_1 = i_1, X_2 = i_1\}$$

$$= pr\{X_1 = i_1, X_2 = i_1\}$$

$$= pr\{X_1 = i_1, X_2 = i_2\}$$

$$= pr\{X_1 = i_1, X_2 = i_1\}$$

$$= pr\{X_1 = i_1, X_2 = i_2\}$$

$$= pr\{X_2 = i_1, X_3 = i_2\}$$

$$= pr\{X_1 = i_1, X_2 = i_3\}$$

$$= pr\{X_2 = i_1, X_3 = i_2\}$$

$$= pr\{X_1 = i_1, X_2 = i_2\}$$

$$= pr\{X_2 = i_1, X_3 = i_3\}$$

$$= pr\{X_1 = i_1, X_2 = i_2\}$$

$$= pr\{X_2 = i_1, X_3 = i_3\}$$

$$= pr\{X_1 = i_1, X_2 = i_3\}$$

$$= pr\{X_2 = i_1, X_3 = i_1, X_3 = i_2\}$$

$$=$$

$$P = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 0.1 & 0.6 & 0.1 & 0.2 \\ 0.2 & 0.3 & 0.4 & 0.1 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$

but 1 and 2 ate notals. → u; = pr {X=0 | X=i}, i=1,2 willy = pr[X_ = 0 | X_ = 1] B = P10 + P1 41 + P12 42 $U_1 = 0.1 + 0.6 U_1 + 0.1 U_2$ = 0.441 - 0.142 = 0.1 1

and Uz= Pr[X = 0 | X0=2] =0.2 +0.34 +0.442 Salving (), (2), 6x0 - (2) 以从三山。二昌

 $U_i = E[T | X_i = i]$ V = 1+ P1 V1+ P2 V2 ⇒ 0.44-0-152=1 0 15=1+P215+P22 U2=1+034+0.45 7 0.34-0.64=10 Shing 0,0, 6x6-0 VI = 19

long run mean lost pur unit period

Ale, we have

$$\begin{cases}
T_{0} = 0.3T_{0} + 0.5T_{1} + 0.5T_{2} \\
T_{1} = 0.2T_{0} + 0.1T_{1} + 0.2T_{2}
\end{cases}$$

$$T_{0} + T_{1} + T_{2} = 1$$

Solving Q. Q. al @ Ly wring

Gamer's rul
$$\Delta = \begin{vmatrix} 7 & -5 & -5 \\ 2 & -9 & 2 \end{vmatrix} = -132 = -132$$
Then $P = 1 - \bar{e}^{R}$

$$8D_1 = -55, \Delta_2 = -24, \Delta_3 = -53$$

long run men cast por unit.

(b) For Yul proass $P_{n}(t) = e^{\beta t} (1 - e^{\beta t})^{n-1}, n = 1$

$$P_{n}(t) = \bar{e}^{\beta t} (1 - \bar{e}^{\beta t}), n = 1$$

$$P_{n}(t) = \bar{e}^{\beta t} (1 - \bar{e}^{\beta t}), n = 1$$

$$P_{n}(t) = \bar{e}^{\beta t} (1 - \bar{e}^{\beta t}), n = 1$$

$$P_{n}(t) = \bar{e}^{\beta t} (1 - \bar{e}^{\beta t}), n = 1$$

$$P_{n}(t) = \bar{e}^{\beta t} (1 - \bar{e}^{\beta t}), n = 1$$

=1 (1-e-Bu) K-1 = Fu du

$$= \frac{1}{\beta} \left[\frac{(1 - e^{-\beta y})^k}{k} \right]^{\frac{1}{2}}$$

$$=\frac{\rho \kappa}{\beta k}, k = 1, 2, ...$$

$$\frac{Q^{2}}{p^{2}} = \frac{|X|}{|X|} \times \frac{|X|}{|X|} = \frac{|X|}{|X|$$

(b)
$$i = \pm 5$$
 fortune for player A
 $N = \pm 5 + \pm 10 = \pm 15$
 $P = 0.4929 \Rightarrow q = 1 - P = 0.5071$
 $U_{i} = Pr \left\{ X_{i} \text{ Facker state 0 before state } N \mid X_{0} = i \right\}$
 $U_{i} = \frac{(910)^{i} - (910)^{N}}{1 - (910)^{N}} \qquad P \pm 9$
 $U_{i} = \frac{(910)^{i} - (910)^{N}}{1 - (910)^{N}} \qquad P \pm 9$
 $U_{i} = \frac{(910)^{i} - (910)^{N}}{1 - (910)^{N}} \qquad P \pm 9$
 $U_{i} = \frac{(910)^{i} - (910)^{N}}{1 - (910)^{N}} \qquad P \pm 9$
 $U_{i} = \frac{(910)^{i} - (910)^{N}}{1 - (910)^{N}} \qquad P \pm 9$

: 4: ~ 0.71273

#

0	5(5)	(5,9) (45	1 (9)	
(5,5)	0-8	0-2 1	0 //	
(5,9)	0	0 0-4	© 6	
	0-6	0-4 0	<i>v</i>	
(99)	0	o o-t	ବ୍ୟ	
	1	J J	To	
Color	Tun the	In The	dista is	
				- 15
281	-0-60	(=16 =)	Th= 3 Th	7 元二元二子》
0.2 1	+0-4	瓜二丁二	T - 5 T = 3	6
$T = (T_{b_1} I_{b_1} I_{b_2} I_{b_3})$ $0.8 T_{b_1} + 0.6 T_{b_1} = T_{b_1} \Rightarrow T_{b_2} = T_{b_3}$ $0.2 T_{b_1} + 0.4 T_{b_2} = T_{b_1} \Rightarrow T_{b_2} = S_{b_3}$ $0.4 T_{b_1} + 0.1 T_{b_2} = T_{b_3} \Rightarrow T_{b_3} = S_{b_3}$ $0.4 T_{b_1} + 0.1 T_{b_2} = T_{b_3} \Rightarrow T_{b_3} = S_{b_3}$ $S = T_{b_1} + T_{b_1} + T_{b_2} + T_{b_3} \Rightarrow T_{b_3} = T_{b_3}$ $S = T_{b_3} + T_{b_4} + T_{b_4} + T_{b_5} \Rightarrow T_{b_5} = T_{b_5}$				
8 .	To thet	0217	11.16	三元
S. To + The thirt Is at a factor in which was somy				
of the long the				
- 15	+1,=	11		

XIEI represents the size of the population exter -0 is the initial Condition => P(a) =) 1 n=0 W > dew = - 7PH Salin = - Dodu : [ln | (w)] = - D[u] t lu (14)-lu (10) =- Dt Polo = 1 initial Condition => ln (1) = 0 .. l. B(t) = - At -> BH = EAT (3) (i) = dht = Dh (t) -Dh (t) .. dhe + Photo = Photo , n=1,2,... Mulaply book side by ent ent dhu + shul] = ent [shul] : #[(RH) ent] = 2 1 H) ent Allite ent] = Plant ent dt => [[[an enz] =] [[[n] an enz da

$$\begin{aligned}
& \cdot \cdot \cdot \left[f_{n}(x) e^{\lambda x} \right]^{t} = \lambda \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = e^{\lambda t} \left[\lambda \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \right] \\
& \cdot \cdot \cdot \cdot f_{n}(t) = e^{\lambda t} \left[\lambda \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \right] \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(x) e^{\lambda x} dx \\
& \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(t) e^{\lambda t} dx \\
& \cdot \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(t) e^{\lambda t} dx \\
& \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(t) e^{\lambda t} dx \\
& \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(t) e^{\lambda t} dx \\
& \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(t) e^{\lambda t} dx \\
& \cdot f_{n}(t) = \lambda e^{\lambda t} \int_{n-1}^{t} f_{n}(t) e^{\lambda t} dx$$

(b)
$$p_{x} \left\{ X(3) = 6 \mid X(0) = 2 \right\}$$

 $= p_{x} \left\{ X(3) = 6 \right\}$
 $= p_{x} \left\{ X(3) = 6 \right\}$
 $= p_{x} \left\{ X(3) = 4 \right\}$
 $= \frac{q_{x} = q_{x}}{q_{x}!} = \frac{32}{3} = \frac{2}{3}$
 $= \frac{q_{x} = q_{x}}{q_{x}!} = \frac{32}{3} = \frac{2}{3}$

Rehaming disty

#