Final Exam, S2 1438/1439
M 380 - Stochastic Processes
Time: 3 hours

Choose only 5 questions from the following:

Q1: $[4+4]$
(a) For the Markov process $\left\{\mathrm{X}_{t}\right\}, \mathrm{t}=0,1,2, \ldots, \mathrm{n}$ with states $\mathrm{i}_{0}, \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{n-1}, \mathrm{i}_{n}$

Prove that: $\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{i_{0}} P_{i_{i 4}} P_{i i_{i}} \ldots P_{i_{i-1}-i_{0}}$ where $p_{i_{0}}=\operatorname{pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$
(b) A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ has the transition probability matrix

$$
\left.\mathbf{P}= \right\rvert\,
$$

Find $\operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1 \mid \mathrm{X}_{0}=0\right\}$.
Q2: $[4+4]$
Consider the Markov chain whose transition probability matrix is given by

$$
\left.\mathbf{P}=\begin{array}{l||cccc||}
\\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 \\
1 & 0.1 & 0.6 & 0.1 & 0.2 \\
2 & 0.2 & 0.3 & 0.4 & 0.1 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

(a) Starting in state 1, determine the probability that the Markov chain ends in state 0 .
(b) Determine the mean time to absorption.

Q3: [5+3]
(a) A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ has the transition probability matrix

$$
\mathbf{P}=\begin{array}{c|ccc|}
\\
0 & \left.\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0.3 & 0.2 \\
\hline
\end{array} \right\rvert\, \begin{array}{ccc}
0.5 & 0.5 & 0.4 \\
& 0.5 & 0.2
\end{array} & 0.3
\end{array}
$$

Every period that the process spends in state 0 incurs a cost $\$ 2$. Every period that the process spends in state 1 incurs a cost of $\$ 5$. Every period that the process spends in state 2 incurs a cost of $\$ 3$. What is the long run cost per period associated with this Markov chain?
(b) Let $\mathrm{X}(\mathrm{t})$ be a Yule process that is observed at a random time U , where U is uniformly distributed over $[0,1)$. Show that $\operatorname{pr}\{\mathbf{X}(\mathbf{U})=k\}=p^{k} /(\beta k)$ for $k=1,2, \ldots$, with $p=1-e^{-\beta}$.

Q4: $[4+4]$
(a) Let $\left\{\mathrm{X}_{n}\right\}$ be a Markov chain with state space $\mathrm{S}=\{1,2\}$ has the transition probability matrix $\mathbf{P}=\left\|\begin{array}{cc}0.5 & 0.5 \\ 1 & 0\end{array}\right\|$, find $p r\left\{\mathrm{X}_{5}=2 \mid \mathrm{X}_{2}=1\right\}$.
(b) The probability of the thrower winning in the dice game is $\mathrm{p}=0.4929$. Suppose player A is the thrower and begins the game with $\$ 5$, and player B , his opponent, begins with $\$ 10$. What is the probability that player A goes bankrupt before player B? Assume that the bet is $\$ 1$ per round.

Q5: [8]
Suppose that the weather on any day depends on the weather conditions for the previous 2 days. Suppose also that if it was sunny today and yesterday, then it will be sunny tomorrow with probability 0.8 ; if it was sunny today but cloudy yesterday, then it will be sunny tomorrow with probability 0.6 ; if it was cloudy today but sunny yesterday, then it will be sunny tomorrow with probability 0.4 ; if it was cloudy for the last 2 days, then it will be sunny tomorrow with probability 0.1. Transform this model into a Markov chain, and then find the transition probability matrix. Find also the long run fraction of days in which it is sunny.

Q6: [4+4]
(a) Using the differential equations

$$
\begin{align*}
& \frac{d p_{0}(t)}{d t}=-\lambda p_{0}(t) \tag{1}\\
& \frac{d p_{n}(t)}{d t}=\lambda p_{n-1}(t)-\lambda p_{n}(t), \mathrm{n}=1,2,3, \ldots \tag{2}
\end{align*}
$$

where all birth parameters are the same constant λ with initial condition $X(0)=0$,
Show that $p_{n}(t)=\frac{(\lambda t)^{n} e^{-\lambda t}}{n!}, n=0,1,2, \ldots$
(b) Suppose that customers arrive at a facility according to a Poisson process having rate $\lambda=2$. Let $\mathrm{X}(\mathrm{t})$ be the number of customers that have arrived up to time
t . Determine the following conditional probabilities
$p r\{\mathrm{X}(3)=6 \mid \mathrm{X}(1)=2\}$ and $p r\{\mathrm{X}(1)=2 \mid \mathrm{X}(3)=6\}$.

Model Ansuer foo
M380-Stachasic procestes

Q1
(a)

$$
\begin{aligned}
& \operatorname{pr}\left\{x_{0}=i_{1} x_{1}=i_{1}, x_{2}=i_{2}, \ldots, x_{n-1}=i_{n-1}, x_{n}=i_{n}\right\} \\
& =\operatorname{pr}\left\{x_{0}=i_{0}, x_{1}=i_{1}, x_{2}=i, \ldots, x_{n-1}=i_{n-1}\right\} \\
& \cdot \operatorname{pr}\left\{x_{n}=i_{n} \mid x_{0}=i, x_{1}=i_{1, \ldots}, x_{n-1}=i_{n-1}\right\} \\
& \operatorname{pr}(x, y)=\operatorname{pr}(x \mid y) \operatorname{pr}(y)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{pr}\left\{x_{0}=i, x_{1}=i, \ldots, x_{n-1}=i_{n-1}\right\} \text {. } \operatorname{Pr}\left\{x_{n}=i_{n} \mid x\right. \\
& =\operatorname{Pr}\left\{x_{0}=i_{0}, x_{1}=i_{1}, \cdots, x_{n-1}=i_{n-1}\right\} P_{i_{n-1}} i_{n}
\end{aligned}
$$

wher $\operatorname{Pij}_{i j}=\operatorname{pr}\left\{X_{n+1}=\hat{j} \mid X_{n}=i\right\}$
By repeating this argument $n-1$ times, we obmin

$$
\begin{aligned}
& \operatorname{pr}\left\{x_{0}=i, x_{1}=i, \ldots, x_{n-1}=i_{n-1}, x_{n}=i_{n}\right\} \\
& =P_{i} P_{i b i} P_{i, i_{2}} \ldots P_{i, 1} i_{n} \text { aher } P_{i}=\operatorname{Pr}\left\{x_{0}=i\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \\
& \operatorname{pr}\left\{X_{1}=1, X_{2}=\left.1\right|_{0} ^{n}=0\right\} \\
& =\operatorname{pr}\left\{x_{2}=1 \mid x_{1}=1, x_{0}=0\right\} \cdot \operatorname{pr}\left\{x_{1}=1 \mid x_{0}=0\right\} \\
& =\operatorname{pr}\left\{x_{2}=1 \mid x_{1}=1\right\} \cdot \operatorname{pr}\left\{x_{1}=1 \mid x_{0}=0\right\} \text { Markev } \operatorname{prof} \\
& =P_{11} P_{01}=0.6(0.2)=0.12
\end{aligned}
$$

Qe

$$
\left.p=\begin{array}{c||cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0.1 & 0.6 & 0.1 & 0.2 \\
2 & 0.2 & 0.3 & 0.4 & 0.1 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

$$
\begin{aligned}
& U_{i}=E\left[T \mid X_{0}=i\right] \\
& U_{1=1,2}=1+P_{11} U_{1}+P_{12} V_{2} \\
& U_{1}=1+0.6 U_{1}+0.1 v_{2} \\
& \Rightarrow 0.4 v_{1}-0.1 v_{2}=1
\end{aligned}
$$

Dand 3 are 2 aborbing states
but 1 and 2 are notals.

$$
\begin{align*}
\Rightarrow u_{i} & =\operatorname{Pr}\left\{X_{T}=0 \mid X_{0}=i\right\}, i=1,2 \tag{2}\\
& =\operatorname{Pr}\left\{X_{T}=0 \mid X_{0}=1\right\} \\
& =P_{10}+P_{11} u_{1}+P_{12} u_{2} \\
& =0.4 u_{1}-0.1 u_{2}=0.1
\end{align*}
$$

$$
v_{2}=1+0.3 v_{1}+0.4 v_{2}
$$

$\therefore x_{0}=1$
and $u_{2}=\operatorname{pr}\left\{x_{T}=0 \mid x_{0}=2\right\}$

$$
U_{2}=1+P_{21} U_{1}+P_{22} U_{2}
$$

$$
\Rightarrow 0.3 v_{1}-0.6 c_{2}=-1
$$

Solving (1), (2), $11 \times 6-(2)$

$$
v_{1}=10
$$

$$
\begin{aligned}
&=P_{20}+P_{21} u_{1}+P_{22} u_{2} \\
&=0.2+0.3 u_{1}+0.4 u_{2} \\
& \therefore 0.3 u_{1}-0.6 u_{2}=-0.22
\end{aligned}
$$

Solving (1), (1), 6x(1) - (2) \Rightarrow

$$
\therefore u=u_{10}=\frac{8}{21}
$$

proces X_{0}, X_{1}, X_{2}

$$
c_{0}=\xi^{2}{\underset{c}{1}}_{x_{1}}^{1}=\$ 5 x_{1}, x_{2}=\$ 3
$$

long rum mean Cost por unit period

$$
\begin{align*}
& =\sum_{j=0}^{2} \pi_{j} c_{j} \\
& =\pi_{b} c_{0}+\pi_{1} c_{1}+\pi_{2} c_{2} \tag{L}
\end{align*}
$$

$$
\begin{align*}
& \text { Als, we tave } \\
& \left\{\begin{array}{l}
\pi_{6}=0.3 \pi_{6}+0.5 \pi_{1}+0.5 \pi_{2} \\
\pi_{1}=0.2 \pi_{6}+0.1 \pi_{1}+0.2 \pi_{2} \\
\pi_{0}+\pi_{1}+\pi_{2}=1 \\
\Rightarrow\left[\begin{array}{r}
0 \\
7
\end{array}\right) 5 \pi_{1}-5 \pi_{2}=0 \\
2 \pi_{0}-9 \pi_{1}+2 \pi_{2}=0 \\
\pi_{6}+\pi_{1}+\pi_{2}=0
\end{array}\right. \tag{1}
\end{align*}
$$

Als, we have

Solving (1, (2)ad (3) hy using

$$
\Delta=\left|\begin{array}{ccc}
7 & -5 & -5 \\
2 & -9 & 2 \\
1 & 1 & 1
\end{array}\right|=-132
$$

$$
\left.\begin{array}{l}
8 \Delta_{1}=-55, \Delta_{2}=-24, \Delta_{3}=-53 \\
\Rightarrow \\
\pi_{1}=\frac{\Delta 1}{\Delta}=\frac{5}{12} \\
, \pi_{1}=\frac{\Delta_{2}}{\Delta}=\frac{2}{11} \tag{II}\\
, \pi_{2}=\frac{\Delta_{3}}{\Delta}=\frac{53}{132}
\end{array}\right\} \text { (II) }
$$

Subs. (II) in II
lorg run mean cart por unit.

$$
\begin{aligned}
& =38 / 132 \\
& \simeq 2.95
\end{aligned}
$$

(b) For Yuh proass

$$
P_{n}(t)=e^{-\beta t}\left(1-e^{-\beta t}\right), n \geqslant 1
$$

$$
\operatorname{pr}[x(U)=k]=\int_{0}^{1} e^{1} \beta u\left(1-e^{-\beta}\right)^{k-1} d k
$$

$$
, k=1,2, \ldots
$$

$$
=\frac{1}{\beta_{0}} \int^{1}\left(1-e^{k=1,2, \ldots}\right)^{k-1} \beta e^{-\beta u} d u
$$

$$
=\frac{1}{\beta}\left[\frac{\left(1-e^{-\beta u}\right)^{k}}{k}\right]_{0}^{1}
$$

$$
=\frac{1}{\beta k}\left(1-e^{-\beta}\right)^{k}
$$

$$
\begin{aligned}
& =\frac{\rho k}{\beta k}, k \leq 1,2, \ldots \\
& \text { cohere } \rho=1-e^{-\beta}
\end{aligned}
$$

where $\rho=1-e^{-\beta}$

QY (a)
(b)

$$
\begin{aligned}
& i=\$ 5 \quad \text { frome for ploger } A \\
& N=\$ 5+\$ 10=\$ 15 \\
& p=0.4929 \Rightarrow q=1-p=0.5071
\end{aligned}
$$

$u_{i}=\operatorname{pr}\left\{X_{n}\right.$ reacho state 0 before stat $\left.N \mid X_{0}=i\right\}$

$$
\therefore u_{:} \simeq 0.71273
$$

$$
\begin{aligned}
& u_{1}=\frac{(q / 1)^{i}-(q / 1)^{N}}{1-(q 1 p)^{N}} \quad, p \neq q \\
& u_{i}=\frac{\left[\left(\frac{0.5071}{0.4949}\right)^{5}-\left(\frac{0.5071}{0.4989}\right)^{15}\right]}{1-\left(\frac{0.5071}{0.4929}\right)^{15}}
\end{aligned}
$$

$$
\begin{aligned}
& p_{i}^{8} ? \\
& p^{2}=\left\lvert\, \begin{array}{cc}
x & y \\
1 & 0
\end{array}\| \| \begin{array}{cc}
x & \varepsilon \\
1 & 0
\end{array}\|=\| \begin{array}{ll}
3 / 2 & 1 / y \\
y / 2 & y
\end{array}\right. \|
\end{aligned}
$$

$$
\begin{aligned}
& p_{2}^{3}-3 / 8
\end{aligned}
$$

Q5

$$
\text { Wreuthen stath }=\left\{(s s)_{0}(s, d),(c, s)_{0}\left(c_{0}, s\right)\right\}
$$

$s \rightarrow \sin n y s \in$ clumen
\Rightarrow The tamition probe His is gien 4

For \log tain the bimuning dista is

$$
\begin{aligned}
& \pi=\left(\pi_{6} \pi_{16} \pi_{2}, \pi_{5}\right) \\
& \left.0.8 \pi_{0}+0.6 \pi_{2}=\pi_{6} \Rightarrow \pi_{2}=\frac{1}{3} \pi_{0}\right\} \pi_{1}=\pi_{2}+\frac{t}{3} \\
& 0.2 \pi_{0}+0.4 \pi_{2}=\pi_{1} \Rightarrow \pi_{2}=\frac{2}{2} \Rightarrow \pi_{5}=6 \pi_{1}=2.0 . \\
& 0.4 \pi_{1}+0.1 \pi_{3}=4,(1+3+3+2) \pi \times d \\
& \begin{array}{r}
\left.S \because \pi_{0}+\pi_{c}+\pi_{2}+\pi_{3}=t \rightarrow \pi_{0}=\frac{3}{1}, \pi_{1}=\frac{1}{\pi}, \pi_{3}=\frac{2}{\pi}\right) \\
\therefore \pi_{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * The loug run fracen of day in akon es semy }
\end{aligned}
$$

$$
=\pi_{0}+\pi_{1}=\frac{4}{11}
$$

ab
(a) $X(s)$ ropessines ith sige of the ppulation $-X(A)=0$ is Mi inviil Condiain.

$$
\begin{aligned}
& \Rightarrow P_{n}(a)= \begin{cases}1, & n=0 \\
0, & \text { othoraise }\end{cases} \\
& \text { (i) } \Rightarrow \frac{d f(t)}{d t}=-\lambda P_{0}(t) \\
& \int_{0}^{t} \frac{d b^{t}(w)}{b_{0}(u)}=-\lambda \int_{0}^{t} d u \\
& \therefore\left[\operatorname{lon} p_{0}(u)\right]_{0}^{t}=-\lambda[u]_{0}^{t} \\
& \text { l. } \rho(t)-\ln \rho(0)=-\lambda t
\end{aligned}
$$

$P(0)=1 \quad$ inimil Condarion $\Rightarrow \ln (1)=0$

$$
\begin{align*}
& P_{0}(e)=1 \tag{3}\\
& \therefore \operatorname{lon}_{0}(t)=-\lambda t \Rightarrow P_{0}(t)=e^{-\lambda t} \\
&(z) \Rightarrow \frac{d l_{0}(t)}{d t}=\lambda P_{n-1}(t)-\lambda P_{1}(t) \\
& \therefore \frac{d P_{0}(t)}{d t}+\lambda C_{n}(t)=\lambda P_{n-1}(t), n=1,2, \ldots \\
& \text { lider bre } e^{\lambda t}
\end{align*}
$$

Mukaily bork sider log $e^{\lambda t}$

$$
\begin{aligned}
& \text { Mudaily bork sider log } e \\
& e^{\lambda t}\left[\frac{d l_{n}(t)}{d t}+\lambda l_{n}(t)\right]=e^{\lambda t}\left[\lambda P_{n-1}(t)\right] \\
\therefore & \frac{d}{d t}\left[P_{n}(t) e^{\lambda t}\right]=\lambda P_{n-1}(t) e^{\lambda t} \\
& d\left[P_{n}(t) e^{\lambda t}\right]=\lambda P_{n-1}(t) e^{\lambda t} d t \\
\Rightarrow & \left.\int_{0}^{t} d\left[l_{n} / x\right) e^{\lambda x}\right]=\lambda \int_{0}^{t}(x) e^{\lambda x} d x
\end{aligned}
$$

$$
\begin{align*}
\therefore & {\left[P_{n}(x) e^{\lambda x}\right]_{0}^{t}=\lambda \int_{0}^{-7} \int_{n-1}^{t}(x) e^{\lambda x} d x } \\
& P_{n}(t) e^{\lambda t}-l_{1}(0)=\lambda \int_{n-1}^{t} P_{0}(x) e^{\lambda x} d x \\
0 & \therefore P_{n}(t)=e^{-\lambda t}\left[\int_{0}^{n \bar{t}} P_{n-1}(x) e^{\lambda x} d x\right] \\
& P_{n}(t)=\lambda e^{-\lambda t} \int_{0}^{t} P_{n-1}(x) e^{\lambda x} d x \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \text { which is a recurrana relattion } \\
& \text { at } n=1(4) \Rightarrow P_{1}(t)=\lambda e^{-\lambda t} \int_{0}^{t} P_{0}(x) e^{\lambda x} d x \\
& \text { (3) } \begin{aligned}
\Rightarrow & \lambda e^{-\lambda t} \int_{0}^{t} e^{-\lambda x} e^{\lambda x} d x
\end{aligned} \\
& =\lambda e^{-\lambda t} \int_{0}^{t} d x \\
& P(t)=\lambda t e^{-\lambda t} \tag{5}\\
& \text { at } n=2 \text { (4) } \Rightarrow P_{2}(t)=\lambda e^{-\lambda t} \int_{0}^{t} P_{1}(x) e^{\lambda x} d x \\
& \begin{array}{l}
(5) \Rightarrow \lambda e^{-\lambda t} \int_{0}^{t} \lambda x e^{-\lambda x} e^{\partial x} d x
\end{array} \\
& P_{c}(t)-\lambda^{2} e^{-\lambda t} \int^{t} x d x=\frac{1}{2} \lambda^{2} e^{-\lambda t} t^{2} \\
& \text { similahy. }{ }^{\prime \prime} P_{n}(t)=\frac{1}{2}(\lambda t)^{2} e^{-\lambda t} \ldots \frac{(\lambda t)^{n} e^{-\lambda t}}{n!}, n=0,1,2, \ldots
\end{align*}
$$ which is callet poisson proas \#

$$
\begin{aligned}
& \text { (b) } \\
& p\{x(3)=6 \mid x(0)=8\} \\
& =p\{x(s)-\sigma\} \\
& =p\{x(s)-x(i)=v\} \\
& =\frac{(\Delta)^{x} e^{-\lambda t}}{x!} \\
& =\frac{4!e^{-4}}{4!}=\frac{3 e^{4}}{3} \\
& \omega_{2} P^{2}(\delta)=A \\
& \text { andons.e }
\end{aligned}
$$

$$
\begin{aligned}
& \partial t=3(1)=4 \\
& \int p\{x(0)=: \mid x(s)=\sigma\} \\
& -\binom{n}{y} p^{x} y^{n-x} y \text { einamind dirn } \\
& =\binom{6}{z}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{Y}-H
\end{aligned}
$$

