Solutions to Exercises on Random Variables and their distributions

1. An urn contains N bulls numbered from 1 to N. We pick a randomly a bull (all the bulls are equally likely to be extracted) and define the r.v. X by the number of the extracted bull.
(a) Calculate the expectation and the variance of X.

Remark fist that X is a uniform discrete random variable on $\{1,2,3, \ldots, N\}$.

$$
E[X]=\sum_{k=1}^{N} k P(X=k)=\frac{1}{N} \sum_{k=1}^{N} k=\frac{(1+N) N}{2 N}=\frac{1+N}{2}
$$

and

$$
E\left[X^{2}\right]=\sum_{k=1}^{N} k^{2} P(X=k)=\frac{1}{N} \sum_{k=1}^{N} k^{2}=\frac{N(2 N+1)(N+1)}{N 6} .
$$

Hence

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{(2 N+1)(N+1)}{6}-\frac{(1+N)^{2}}{4}=\frac{N^{2}-1}{12} .
$$

2. Let X be a r.v. with values in \mathbb{N} such that: $\forall n \in \mathbb{N}^{*}, P(X=n)=\frac{4}{n} P(X=n-1)$.
(a) Find $P(X=0)$

We have

$$
\begin{aligned}
P(X=n) & =\frac{4}{n} P(X=n-1)=\frac{4}{n} \frac{4}{n-1} \cdots \frac{4}{2} \frac{4}{1} P(X=0) \\
& =\frac{4^{n}}{n!} P(X=0) \quad \forall n \in \mathbb{N}^{*} .
\end{aligned}
$$

We know that

$$
\begin{aligned}
\sum_{n=0}^{\infty} P(X=n) & =1 \Longleftrightarrow P(X=0)+\sum_{n=1}^{\infty} \frac{4^{n}}{n!} P(X=0)=1 \\
& \Longleftrightarrow P(X=0)\left(\sum_{n=0}^{\infty} \frac{4^{n}}{n!}\right)=1 \\
& \Longleftrightarrow P(X=0)=e^{-4}
\end{aligned}
$$

(b) Find the distribution of X and calculate its expectation and its variance.
3. Two players are tossing fair coins. A tosses $(n+1)$ times the coin and B tosses n times the coin $\left(n \in \mathbb{N}^{*}\right)$. Let X and Y be the number of "heads" got respectively by the player A and the player B.
(a) Calculate the probability of the following events $\{X-Y=k\}, k \in \mathbb{Z},\{X=Y\},\{X>Y\}$.
4. We toss n times a fair coin and define the r.v. X to be the number of tails got after n tosses and define the r.v. $Y=\frac{a^{X}}{2^{n}},\left(a \in \mathbb{R}_{+}^{*}\right)$. Calculate $E[Y]$.
5. Let X be a Poison r.v. with parameter λ and define the r.v. Y by

$$
Y= \begin{cases}\frac{X}{2} & \text { if } X \text { is even } \\ 0 & \text { if } X \text { is odd }\end{cases}
$$

(a) Find the distribution Y, and calculate its expectation and its variance.
6. Let X and Y be two independent r.v. taking values in \mathbb{N} : such that X follows the Bernoulli distribution with parameter p and Y follows a Poisson distribution of parameter λ. Now define the r.v. Z by $Z=X Y$.
(a) Calculate the distribution of Z.
(b) Find the moment generating function (MGF) of Z.
(c) Deduce $E[Z]$ and $\operatorname{Var}[Z]$.
(d) Calculate $P(X=1 \mid Z=0)$.
7. Let X_{1} and X_{2} be two i.i.d. r.v. with values in \mathbb{N} such that:

$$
\forall k \in \mathbb{N}, P\left(X_{1}=k\right)=\frac{1}{2^{k+1}}
$$

(a) Find the distribution and calculate the expectation of $Y=\max \left(X_{1}, X_{2}\right)$.

Solution. i) $Y(\Omega)=\mathbb{N}$, ii) $\forall k \in \mathbb{N} p(k)=P(Y=k)$.
We have $Y(\Omega)=\mathbb{N}$, ii) $\forall k \in \mathbb{N} p(k)=P(Y=k)$. We have

$$
\begin{aligned}
P(Y=k) & =P\left(\max \left(X_{1}, X_{2}\right)=k\right) \\
& =P\left(X_{2}=k, X_{1}<X_{2}\right)+P\left(X_{1}=k, X_{1} \geq X_{2}\right) \\
& =P\left(X_{2}=k, X_{1}<k\right)+P\left(X_{1}=k, X_{2} \leq k\right) \\
& =P\left(X_{2}=k\right) P\left(X_{1}<k\right)+P\left(X_{1}=k\right) P\left(X_{2} \leq k\right) \\
& =P\left(X_{2}=k\right)\left[P\left(X_{1}<k\right)+P\left(X_{2} \leq k\right)\right]\left(\text { since } P\left(X_{1}=k\right)=P\left(X_{2}=k\right)\right) \\
& =P\left(X_{1}=k\right)\left[2 P\left(X_{1} \leq k\right)-P\left(X_{1}=k\right)\right] \\
& =\frac{1}{2^{k+1}}\left(\sum_{i=0}^{k} \frac{2}{2^{i+1}}-\frac{1}{2^{k+1}}\right)=\frac{1}{2^{k+1}}\left(\frac{1-2^{-(k+1)}}{1-2^{-1}}\right)-\frac{1}{2^{2 k+2}} \\
& =\frac{1}{2^{k}}\left(1-\frac{1}{2^{k+1}}\right)-\frac{1}{2^{2 k+2}}=\frac{1}{2^{k}}-\frac{3}{2^{2 k+2}}
\end{aligned}
$$

where we have used the relation $\left.P\left(X_{1}<k\right)=P\left(X_{1} \leq k\right)-P\left(X_{1}=k\right)\right)$
8. Let X and Y be two r.v. taking values in \mathbb{N} such that:

$$
\forall m \in \mathbb{N}^{*} \text { and } \forall n \in \mathbb{N} \quad P(\{X=m\} \cap\{Y=n\})=\frac{e^{-1}}{n!} \times \frac{1}{2^{m}}
$$

(a) Find the distributions of X and Y.
i) $X(\Omega)=\mathbb{N}^{*}$ and $Y(\Omega)=\mathbb{N}$, ii) $\forall m \in \mathbb{N}^{*}$ we have

$$
\begin{aligned}
P(X=m) & =\sum_{n=0}^{\infty} P(X=m, Y=n) \\
& \left.=\sum_{n=0}^{\infty} \frac{e^{-1}}{n!} \frac{1}{2^{m}}=\frac{1}{2^{m}} \quad \text { (because } \sum_{n=0}^{\infty} \frac{e^{-1}}{n!}=1\right) .
\end{aligned}
$$

Hence $X \hookrightarrow \mathcal{G}\left(\frac{1}{2}\right)$. And

$$
\begin{aligned}
P(Y=n) & =\sum_{m=1}^{\infty} P(X=m, Y=n) \\
& =\sum_{m=1}^{\infty} \frac{e^{-1}}{n!} \frac{1}{2^{m}}=\frac{e^{-1}}{n!} \quad\left(\text { because } \sum_{m=1}^{\infty} \frac{1}{2^{m}}=1\right) .
\end{aligned}
$$

Then $Y \hookrightarrow \mathcal{P}(1)$.
(b) Are X and Y independent?

We have $\forall m \in \mathbb{N}^{*}$ and $\forall n \in \mathbb{N}$

$$
P(X=m, Y=n)=P(X=m) P(Y=n)
$$

therefore X and Y are independent.
(c) Find their expectation and their variance.

$$
E[X]=\frac{1}{\frac{1}{2}}=2 \quad \text { and } \quad \operatorname{Var}(X)=\frac{1-\frac{1}{2}}{\left(\frac{1}{2}\right)^{2}}=2
$$

and

$$
E[Y]=1 \text { and } \operatorname{Var}(Y)=1
$$

9. Let f be a function defined by:

$$
f(x)= \begin{cases}0 & \text { if } \quad x<0 \\ 1 & \text { if } 0 \leq x<1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

(a) show that f is a probability density function of a r.v. X.
f is a p.d.f. because $f(x) \geq 0$ foe all $x \in \mathbb{R}$, and $\int_{\mathbb{R}} f(x) d x=\int_{0}^{1} 1 d x=1$
(b) Find the c.d.f. of X.

The c.d.f. is given by

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
\int_{0}^{x} 1 d t & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
x & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.\right.
$$

(c) Calculate $E[X]$ and its variance.

We have

$$
E[X]=\int_{-\infty}^{+\infty} t f(t) d t=\int_{0}^{1} t d t=\frac{1}{2}
$$

and

$$
E\left[X^{2}\right]=\int_{-\infty}^{+\infty} t^{2} f(t) d t=\int_{0}^{1} t^{2} d t=\frac{1}{3}
$$

Then

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{3}-\left(\frac{1}{2}\right)^{2}=\frac{1}{12}
$$

10. Let X be r.v. having a p.d.f. f given by:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
a(x+1) & \text { if } & 0 \leq x<2 \\
a(x-1) & \text { if } & 2 \leq x<4 \\
0 & \text { if } & x \geq 4
\end{array}\right.
$$

(a) Find the value of the constant a

$$
\int_{0}^{2} f(x) d x=1 \Longleftrightarrow \int_{0}^{2} a(x+1) d x+\int_{2}^{4} a(x-1) d x=1 \Longleftrightarrow 8 a=1
$$

hence $a=\frac{1}{8}$
(b) Give the c.d.f F_{X} of X

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
\int_{0}^{x} \frac{1}{8}(t+1) d t & \text { if } & 0 \leq x<2 \\
\int_{0}^{2} \frac{1}{8}(t+1) d t+\int_{2}^{x} \frac{1}{8}(t-1) d t & \text { if } & 2 \leq x<4 \\
1 & \text { if } & x \geq 4
\end{array}\right.
$$

but we have

$$
\int_{0}^{x} \frac{1}{8}(t+1) d t=\frac{1}{16} x(x+2)
$$

and

$$
\int_{0}^{2} \frac{1}{8}(t+1) d t+\int_{2}^{x} \frac{1}{8}(t-1) d t=\frac{1}{16} x(x-2)+\frac{1}{2}
$$

Therefore

$$
=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
\frac{1}{16} x(x+2) & \text { if } & 0 \leq x<2 \\
\frac{1}{16} x(x-2)+\frac{1}{2} & \text { if } & 2 \leq x<4 \\
1 & \text { if } & x \geq 4
\end{array}\right.
$$

(c) Deduce the value $P[1 \leq X<3]$.

We have

$$
\begin{aligned}
P[1 \leq X<3] & =F_{X}(3)-F_{X}(1) \\
& =\frac{1}{16} 3(3-2)+\frac{1}{2}-\frac{1}{16} 1(1+2)=\frac{1}{2}
\end{aligned}
$$

(d) Calculate $E[X]$ and $\operatorname{Var}[X]$

We have

$$
E[X]=\int_{-\infty}^{+\infty} t f(t) d t=\int_{0}^{2} t \frac{1}{8}(t+1) d t+\int_{2}^{4} t \frac{1}{8}(t-1) d t=\frac{13}{6}
$$

and

$$
E\left[X^{2}\right]=\int_{-\infty}^{+\infty} t^{2} f(t) d t=\int_{0}^{2} t^{2} \frac{1}{8}(t+1) d t+\int_{2}^{4} t^{2} \frac{1}{8}(t-1) d t=6
$$

Then

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=6-\left(\frac{13}{6}\right)^{2}=\frac{47}{36}
$$

11. Let X be a continuous r.v. with p.d.f. f such that

$$
f(x)=\left\{\begin{array}{lll}
c \ln x & \text { if } & 0<x<1 \\
0 & \text { if } & \text { otherwise }
\end{array}\right.
$$

(a) Find the true value of c.

$$
\int_{0}^{1} c \ln (x) d x=[c(x \ln (x)-x)]_{0}^{1}=-c=1 \text { hence } c=-1
$$

(b) Give the c.d.f F_{X} of X

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
\int_{0}^{x}-\ln (t) d t & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.
$$

Hence the c.d.f. is given by

$$
F_{X}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
x-x \ln (x) & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.
$$

(c) Calculate $E[X]$ and $\operatorname{Var}[X]$

$$
E[X]=\int_{0}^{1}-x \ln (x) d x=\left[\frac{1}{4} x^{2}-\frac{1}{2} x^{2} \ln x\right]_{0}^{1}=\frac{1}{4}
$$

and

$$
E\left[X^{2}\right]=\int_{0}^{1}-x^{2} \ln (x) d x=\left[\frac{1}{9} x^{3}-\frac{1}{3} x^{3} \ln x\right]_{0}^{1}=\frac{1}{9}
$$

and then

$$
\operatorname{Var}[X]=\frac{1}{9}-\frac{1}{16}=\frac{7}{144}
$$

(d) Let X be a continuous r.v. with c.d.f. F given by

$$
F(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq x_{0} \\
1-\frac{K}{x^{2}} & \text { if } & x_{0}<x<+\infty
\end{array}\right.
$$

(e) Find the p.d.f. f of X and find the value of K.

The p.d.f. f of X is given $f(x)=F^{\prime}(x)=\frac{2 K}{x^{3}}$. To find K we solve the equation

$$
\int_{x_{0}}^{+\infty} f(x) d x=1 \Longleftrightarrow K \int_{x_{0}}^{+\infty} \frac{2}{x^{3}} d x=1 \Longleftrightarrow \frac{K}{x_{0}^{2}}=1 \Longleftrightarrow K=x_{0}^{2}
$$

Hence $f(x)=\frac{2 x_{0}^{2}}{x^{3}}$
12. Let X be standard normal r.v. that is $X \hookrightarrow \mathcal{N}(0,1)$.
(a) Find the distribution of the r.v. $Y=\frac{X^{2}}{2}$.

We have $Y(\Omega)=\mathbb{R}^{+}$then $F_{Y}(y)=0$ and $f_{Y}(y)=0$, for $y \leq 0$. For $y>0$,

$$
\begin{aligned}
F_{Y}(y) & =P\left(X^{2} \leq 2 y\right) \\
& =P(-\sqrt{2 y} \leq X \leq \sqrt{2 y}) \\
& =F_{X}(\sqrt{2 y})-F_{X}(-\sqrt{2 y}) .
\end{aligned}
$$

Hence

$$
f_{Y}(y)=F_{Y}^{\prime}(y)=\frac{F_{X}^{\prime}(\sqrt{2 y})+F_{X}^{\prime}(-\sqrt{2 y})}{\sqrt{2 y}}
$$

But remember that

$$
F_{X}^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

hence

$$
f_{Y}(y)=\frac{1}{\sqrt{4 y \pi}}(\exp (-y)+\exp (-y))=\frac{\exp (-y)}{\sqrt{y \pi}} \text { for all } y>0
$$

(b) Deduce $E\left[X^{2}\right]$ and $\operatorname{Var}\left[X^{2}\right]$.

$$
E\left[X^{2}\right]=E[2 Y]=2 \int_{0}^{\infty} \frac{y e^{-y}}{\sqrt{y \pi}} d y=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \sqrt{y} e^{-y} d y=\frac{2}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}\right)
$$

where $\Gamma(p)=\int_{0}^{+\infty} e^{-t} t^{p-1} d t$.
And

$$
E\left[X^{4}\right]=E\left[4 Y^{2}\right]=4 \int_{0}^{\infty} \frac{y^{2} e^{-y}}{\sqrt{y \pi}} d y=\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} y^{\frac{5}{2}} e^{-y} d y=\frac{4}{\sqrt{\pi}} \Gamma\left(\frac{7}{2}\right) .
$$

Consequently

$$
\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2}=\frac{4}{\sqrt{\pi}}\left(\Gamma\left(\frac{7}{2}\right)-\frac{1}{\pi} \Gamma\left(\frac{3}{2}\right)^{2}\right) .
$$

13. Find the MGF of the following distributions and deduce their expectation and their variance
(a) 1. Bernoulli distribution, 2. Binomial distribution, 3. Poisson distribution, 4. Geometric distribution, 5 . Normal distribution with mean μ and variance σ^{2}.
14. Let X be a r.v. taking values in $\{-b,-a, a, b\}$ (where a and b are real numbers such that $0<a<b)$. Set $Y=X^{2}$.
(a) Find the distribution of Y and the distribution of the couple (X, Y).

We have $Y(\Omega)=\left\{a^{2}, b^{2}\right\}$ and

$$
\begin{aligned}
P\left(Y=a^{2}\right) & =P(X=a \text { or } X=-a) \\
& =P(X=-a)+P(X=a) \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2} .
\end{aligned}
$$

Consequently

$$
P\left(Y=b^{2}\right)=1-P\left(Y=a^{2}\right)=\frac{1}{2}
$$

We have $(X, Y)(\Omega)=(X(\Omega), Y(\Omega))=\left\{\left(-b, b^{2}\right) ;\left(b, b^{2}\right) ;\left(-a, a^{2}\right) ;\left(a, a^{2}\right)\right\}$ and

$$
\begin{aligned}
P\left((X, Y)=\left(-b, b^{2}\right)\right) & =P\left(X=-b, Y=b^{2}\right)=P(X=-b)=\frac{1}{4} \\
P\left((X, Y)=\left(b, b^{2}\right)\right) & =P\left(X=b, Y=b^{2}\right)=P(X=b)=\frac{1}{4} \\
P\left((X, Y)=\left(-a, a^{2}\right)\right) & =P\left(X=-a, Y=a^{2}\right)=P(X=-a)=\frac{1}{4} \\
P\left((X, Y)=\left(a, a^{2}\right)\right) & =P\left(X=a, Y=a^{2}\right)=P(X=a)=\frac{1}{4}
\end{aligned}
$$

(b) Show that Covar $(X, Y)=0$.

By definition we have

$$
\begin{aligned}
\operatorname{Covar}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =E\left[X^{3}\right]-E[X] E\left[X^{2}\right]
\end{aligned}
$$

But

$$
E[X]=\frac{1}{4}(-b-a+a+b)=0 \text { and } E\left[X^{3}\right]=\frac{1}{4}\left(-b^{3}-a^{3}+a^{3}+b^{3}\right)=0
$$

Therefore $\operatorname{Covar}(X, Y)=0$.
(c) Are X and Y independent. We have $Y=X^{2}(Y$ is a function of $X)$ hence they are dependent.
15. Let X_{1} and X_{2} be two independent r.v. such that:

$$
X_{1}(\Omega)=X_{2}(\Omega)=\{-1,1\} \text { and } P\left(\left\{X_{1}=1\right\}\right)=P\left(\left\{X_{2}=1\right\}\right)=\frac{1}{2}
$$

(a) Set $X_{3}=X_{1} X_{2}$. Are the r.v. X_{1}, X_{2} and X_{3} mutually independent?

We calculate

$$
\begin{aligned}
P\left(X_{1}=1, X_{2}=-1, X_{3}=-1\right) & =P\left(X_{1}=1, X_{2}=-1\right) \\
& =P\left(X_{1}=1\right) P\left(X_{2}=-1\right)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} .
\end{aligned}
$$

On the other hand

$$
P\left(X_{1}=1\right) P\left(X_{2}=-1\right) P\left(X_{3}=-1\right)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}
$$

because $X_{3}(\Omega)=\{-1,1\}$

$$
\begin{aligned}
P\left(X_{3}=1\right) & =P\left(X_{1}=-1, X_{2}=-1\right)+P\left(X_{1}=1, X_{2}=1\right) \\
& =\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

Therefore

$$
P\left(X_{1}=1, X_{2}=-1, X_{3}=-1\right) \neq P\left(X_{1}=1\right) P\left(X_{2}=-1\right) P\left(X_{3}=-1\right)
$$

X_{1}, X_{2} and X_{3} are not mutually independent.
16. Let X and Y be two r.v. with the following distribution:
$X(\Omega)=\{-1,1\}$ such that $P(X=-1)=\frac{1}{4}$ and $Y(\Omega)=\{1,2\}$ such that $P(Y=1)=\frac{1}{3}$
Denote by p the probability of the event $\{X=-1\} \cap\{Y=1\}$.
(a) Find the joint probability distribution of the couple (X, Y) in terms of p.

We have $(X, Y)(\Omega)=(X(\Omega), Y(\Omega))=\{(-1,1) ;(-1,2) ;(1,1) ;(1,2)\}$. Moreover we know that

$$
P(X=-1, Y=1)+P(X=-1, Y=2)=P(X=-1)=\frac{1}{4}
$$

and

$$
P(X=-1, Y=1)+P(X=1, Y=1)=P(Y=1)=\frac{1}{3} .
$$

and

$$
P(X=-1, Y=2)+P(X=1, Y=2)=P(Y=2)=\frac{2}{3}
$$

Then

$$
P(X=-1, Y=1)=p \quad \text { and } \quad P(X=-1, Y=2)=\frac{1}{4}-p
$$

and

$$
P(X=1, Y=1)=\frac{1}{3}-p \quad \text { and } \quad P(X=1, Y=2)=\frac{2}{3}-\frac{1}{4}+p=\frac{5}{12}+p
$$

(b) What the required conditions of p ?

The parameter p should satisfy $0<p<1,0<\frac{1}{4}-p<1,0<\frac{1}{3}-p<1$ and $\frac{5}{12}+p<1$ that is $0<p<\frac{1}{4}$
(c) Find the values of p in such away that X and Y become independent.

If X and Y are independent then we should have

$$
P(X=1, Y=1)=\frac{1}{3}-p=P(X=1) P(Y=1)=\frac{3}{4} \frac{1}{3}=\frac{1}{4}
$$

which implies that $p=\frac{1}{12}$. And

$$
P(X=-1, Y=2)=\frac{1}{4}-p=P(X=-1) P(Y=2)=\frac{1}{4} \frac{2}{3}=\frac{1}{6}
$$

which implies that $p=\frac{1}{12}$. And

$$
P(X=-1, Y=1)=p=P(X=-1) P(Y=1)=\frac{1}{4} \frac{1}{3}=\frac{1}{12} .
$$

And

$$
P(X=1, Y=2)=\frac{5}{12}+p=P(X=1) P(Y=2)=\frac{3}{4} \frac{2}{3}=\frac{1}{2}
$$

which implies that $p=\frac{1}{12}$. So X and Y are independent is and only if $p=\frac{1}{12}$.
(d) Find in this case the distributions of the following r.v.:

$$
Z=X Y ; \quad S=X+Y ; \quad D=X-Y ; \quad M=\max (X, Y) ; \quad I=\min (X, Y)
$$

Solutions.

i. We have $p=12$, i. $Z(\Omega)=\{-2,-1,1,2\}$ and ii. Probability mass function:

$$
\begin{aligned}
P(Z=-2) & =P(X=-1, Y=2)=\frac{1}{6}, \quad P(Z=-1)=P(X=-1, Y=1)=\frac{1}{12} \\
P(Z=2) & =P(X=1, Y=2)=\frac{1}{2}, \quad P(Z=1)=P(X=1, Y=1)=\frac{1}{4}
\end{aligned}
$$

ii. We have i. $S(\Omega)=\{0,1,2,3\}$ and ii. Probability mass function:

$$
\begin{aligned}
& P(S=0)=P(X=-1, Y=1)=\frac{1}{12}, \quad P(S=1)=P(X=-1, Y=2)=\frac{1}{6} \\
& P(S=2)=P(X=1, Y=1)=\frac{1}{4}, \quad P(S=3)=P(X=1, Y=2)=\frac{1}{2}
\end{aligned}
$$

iii. We have i. $D(\Omega)=\{-3,-2,-1,0,1\}$ and ii. Probability mass function:

$$
\begin{aligned}
& P(D=-3)=P(X=-1, Y=2)=\frac{1}{6}, P(D=-2)=P(X=-1, Y=1)=\frac{1}{12}, \\
& P(D=-1)=P(X=1, Y=2)=\frac{1}{2}, P(D=0)=P(X=1, Y=1)=\frac{1}{4},
\end{aligned}
$$

iv. We have i. $M(\Omega)=\{1,2\}$ and ii. Probability mass function:

$$
\begin{aligned}
P(M=1) & =P(X=-1, Y=1 \text { or } X=1, Y=1) \\
& =P(X=-1, Y=1)+P(X=1, Y=1) \\
& =\frac{1}{12}+\frac{1}{4}=\frac{1}{3} \\
P(M=2) & =1-\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

v. We have i. $I(\Omega)=\{-1,1\}$ and ii. Probability mass function:

$$
\begin{aligned}
P(I=1) & =P(X=1, Y=1 \text { or } X=1, Y=2) \\
& =P(X=1, Y=1)+P(X=1, Y=2) \\
& =\frac{1}{4}+\frac{1}{2}=\frac{3}{4} \\
P(I=-1) & =1-\frac{3}{4}=\frac{1}{4} .
\end{aligned}
$$

17. Let X and Z be two r.v. with integer values. Assume that Z is a Poisson r.v. with parameter λ such that

$$
X \leq Z \quad \text { and } \forall n \geq 0, \quad \forall k \leq n, \quad P(X=k / Z=n)=C_{n}^{k} p^{k}(1-p)^{n-k}(0<p<1) .
$$

(a) Show that X and $Y=Z-X$ are two independent Poisson r.v.

We can write

$$
\begin{aligned}
P(X=k, Y=j) & =P(X=k, Z=j+k) \\
& =P(X=k / Z=j+k) P(Z=j+k) \\
& =C_{j+k}^{k} p^{k}(1-p)^{j} e^{-\lambda} \frac{\lambda^{j+k}}{(j+k)!} \\
& =\frac{(p \lambda)^{k}}{k!} \frac{((1-p) \lambda)^{j}}{j!} e^{-\lambda} \\
& =e^{-\lambda p} \frac{(p \lambda)^{k}}{k!} \cdot e^{-\lambda(1-p)} \frac{((1-p) \lambda)^{j}}{j!} .
\end{aligned}
$$

Now, by taking the summation over j we get

$$
\begin{aligned}
P(X=k) & =\sum_{j=0}^{\infty} P(X=k, Y=j) \\
& =e^{-\lambda p} \frac{(p \lambda)^{k}}{k!} \cdot e^{-\lambda(1-p)} \sum_{j=0}^{\infty} \frac{((1-p) \lambda)^{j}}{j!} \\
& =e^{-\lambda p} \frac{(p \lambda)^{k}}{k!}
\end{aligned}
$$

and by taking the summation over k we get

$$
\begin{aligned}
P(Y=j) & =\sum_{k=0}^{\infty} P(X=k, Y=j) \\
& =e^{-\lambda(1-p)} \frac{((1-p) \lambda)^{j}}{j!} e^{-\lambda p} \sum_{j=0}^{\infty} \frac{(p \lambda)^{k}}{k!} \\
& =e^{-\lambda(1-p)} \frac{((1-p) \lambda)^{j}}{j!} .
\end{aligned}
$$

Consequently $X \hookrightarrow \mathcal{P}(p \lambda), Y \hookrightarrow \mathcal{P}((1-p) \lambda)$ and

$$
P(X=k, Y=j)=P(X=k) P(Y=j) .
$$

Which means that X and Y are independent Poisson random variable.
18. Consider the following joint probability density function p.d.f. of X and Y :

$$
f(x, y)=\left\{\begin{array}{l}
4 x y \text { if } 0<y<1,0<x<1, \\
0 \text { otherwise }
\end{array}\right.
$$

(a) Find i. $P(0<X \leq 0.5,0.25 \leq Y \leq 0.5)$, ii. $P(0<Y<1)$.
i) We have

$$
\begin{aligned}
P(0<X \leq 0.5,0.25 \leq Y \leq 0.5) & =\int_{0}^{0.5} \int_{0.25}^{0.5} 4 x y d x d y \\
& =\int_{0}^{0.5} 2 x d x \int_{0.25}^{0.5} 2 y d y \\
& =\left[x^{2}\right]_{0}^{0.5} \times\left[y^{2}\right]_{0.5}^{0.25} \\
& =\frac{5^{2}}{10^{2}}\left(\frac{5^{2}}{10^{2}}-\frac{\left(5^{2}\right)^{2}}{100^{2}}\right) \\
& =\frac{5^{4}}{10^{4}}\left(1-\frac{5^{2}}{10^{2}}\right)=\frac{3}{64}
\end{aligned}
$$

ii) We have

$$
\begin{aligned}
P(0<Y<1) & =P(-\infty<X<+\infty, 0<Y<1) \\
& =\int_{0}^{1} \int_{0}^{1} 4 x y d x d y=\int_{0}^{1} 2 x d x \int_{0}^{1} 2 y d y \\
& =\left[x^{2}\right]_{0}^{1} \times\left[y^{2}\right]_{0}^{1}=1
\end{aligned}
$$

(b) Find the joint cumulative distribution function c.d.f. of X and Y, i.e., $F_{(X, Y)}(x, y)=$ $P(X \leq x, Y \leq y)$.
By definition of the c.d.f.

$$
\begin{aligned}
F_{(X, Y)}(x, y) & =\int_{-\infty}^{x} \int_{-\infty}^{y} 4 u v d u d v \\
& =\int_{-\infty}^{x} 2 u d u \int_{-\infty}^{y} 2 v d v
\end{aligned}
$$

i. if $x \leq 0$ or $y \leq 0$, then

$$
F_{(X, Y)}(x, y)=0, F_{(X, Y)}(x, y)=0
$$

ii. if $0<x<1$ and $0<y<1$, then

$$
\begin{aligned}
F_{(X, Y)}(x, y) & =\int_{0}^{x} 2 u d u \int_{0}^{y} 2 v d v \\
& =x^{2} y^{2}
\end{aligned}
$$

iii. if $0<x<1$ and $y \geq 1$, then

$$
\begin{aligned}
F_{(X, Y)}(x, y) & =\int_{0}^{x} 2 u d u \int_{0}^{1} 2 v d v \\
& =x^{2}
\end{aligned}
$$

iv. if $0<y<1$ and $x \geq 1$, then

$$
\begin{aligned}
F_{(X, Y)}(x, y) & =\int_{0}^{1} 2 u d u \int_{0}^{y} 2 v d v \\
& =y^{2}
\end{aligned}
$$

v. if $y \geq 1$ and $x \geq 1$, then

$$
F_{(X, Y)}(x, y)=1 .
$$

(c) Find i. $P(X=Y)$, ii. $P(X \leq Y)$, iii. $P(X-Y>1 / 2)$
19. Consider the following joint p.d.f of X and Y :

$$
f(x, y)=\left\{\begin{array}{l}
c(x+3 y) \text { if } 0<y<1,0<x<1 \\
0 \text { otherwise }
\end{array}\right.
$$

(a) Find the value of c
(b) Find the marginal density function of X
(c) Find the joint c.d.f. of X and Y
(d) Find $P(0<X<1 / 2,0<Y<1 / 2)$
(e) Find $P(X<Y)$ and $P(X+Y<1 / 2)$
20. Suppose X and Y are continuous random variables with joint c.d.f. given by $F(x, y)$. For each of the following, find the answer in terms of $F(x, y)$.
(a) $P(X \leq a, Y \leq c)=F(a, c)$
(b) $P(X \leq b)=\lim _{y \rightarrow+\infty} F(b, y), P(Y \leq d)=\lim _{x \rightarrow+\infty} F(x, d)$
(c) $P(a<X \leq b, c<Y \leq d)=F(b, d)-F(b, c)-F(a, d)+F(a, c)$
(d) $P(X>a, Y \leq d)=P(a<X<+\infty,-\infty<Y \leq d)$
$=F(+\infty, d)-F(+\infty,-\infty)-F(a, d)+F(a,-\infty)=F(+\infty, d)-F(a, d)($ since $F(+\infty,-\infty)=$ $F(a,-\infty)=0)$
(e) $P(X>b, Y>d)=P(b<X<+\infty, d<Y<+\infty)=$ $=1-F(+\infty, d)-F(b,+\infty)+F(b, d)$
21. Suppose the joint c.d.f. of two random variables X and Y is given by

$$
F(x, y)=\left\{\begin{array}{cc}
1-e^{-x}-e^{-y}+e^{-x-y}, & \text { for } x, y>0 \\
0, & \text { otherwise } .
\end{array}\right.
$$

(a) Find $P(X<2, Y<2)$,

By definition of the c.d.f.

$$
\begin{aligned}
P(X<2, Y<2) & =F_{(X, Y)}(2,2)=1-e^{-2}-e^{-2}+e^{-4} \\
& =1-2 e^{-2}+e^{-4}
\end{aligned}
$$

(b) Find $P(X<5)$,

$$
\begin{aligned}
P(X<5) & =P(X<5, Y<+\infty)=\lim _{y \rightarrow \infty} F(5, y) \\
& =1-e^{-5}
\end{aligned}
$$

(c) Find $P(1<X<3,2<Y<4)$:

$$
P(1<X<3,2<Y<4)=F(3,4)-F(3,2)-F(1,4)+F(1,2)
$$

(d) Find the joint p.d.f. $f_{(X, Y)}(x, y)$

$$
f_{(X, Y)}(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)=\left\{\begin{array}{cc}
e^{-x-y}, & \text { for } x, y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

(e) Find the p.d.f $f_{X}(x)$ of X and the p.d.f $f_{Y}(y)$ of Y.

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{\infty} f_{(X, Y)}(x, y) d y=e^{-x} \int_{0}^{\infty} e^{-y} d y \\
& =e^{-x}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{Y}(x) & =\int_{0}^{\infty} f_{(X, Y)}(x, y) d x=e^{-y} \int_{0}^{\infty} e^{-x} d x \\
& =e^{-y}
\end{aligned}
$$

