Second Mid Term, S2 1441
M 380 - Stochastic Processes
Time: 90 minutes - Male Section

Answer the following questions:

Q1: $[4+5]$
a) For the Markov process $\left\{X_{t}\right\}, t=0,1,2, \ldots, n$ with states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$

Prove that: $\operatorname{Pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{i_{0}} P_{i_{i 4}} P_{i i_{i}} \ldots P_{i_{i-1}-1 i_{i}}$ where $p_{i_{0}}=\operatorname{pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}\right\}$
b) Consider a spare parts inventory model in which either 0,1 , or 2 repair parts are demanded in any period, with $\operatorname{Pr}\left\{\xi_{n}=0\right\}=0.1, \operatorname{Pr}\left\{\xi_{n}=1\right\}=0.5, \operatorname{Pr}\left\{\xi_{n}=2\right\}=0.4$ and suppose $\mathrm{s}=0$ and $\mathrm{S}=2$. Determine the transition probability matrix for the Markov chain $\left\{\mathrm{X}_{n}\right\}$, where X_{n} is defined to be the quantity on hand at the end of period n .

Q2: [3+6]

a) Let X_{n} denote the weather of the nth day with $\mathrm{X}_{n}=1$ meaning "rainy" and $\mathrm{X}_{n}=2$ meaning "dry". Suppose that $\left\{\mathrm{X}_{n}\right\}, n=0,1,2, \ldots$ evolves as a Markov chain whose transition probability matrix is

$$
\mathbf{P}=\begin{array}{cc}
1 & 2 \\
1 & \| \begin{array}{c}
0.6 \\
2
\end{array} \left\lvert\, \begin{array}{c}
0.4 \\
0.3
\end{array}\right. \\
0.7
\end{array}
$$

Given that, the probability of dry weather on $1^{\text {st }}$ June equals $\frac{5}{8}$. What's the probability that the weather will be rainy on $3^{\text {rd }}$ June.
b) Determine whether the transition matrix

$$
\left.\mathbf{P}=\begin{array}{l||ccc||}
\\
0 \\
1 & 1 & 0 & 0 \\
1 & 0.1 & 0.6 & 0.3 \\
2 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

represents an absorbing Markov chain or not, sketch Markov chain diagram and then find each of the following:
i) Starting in state 1, determine the probability that the Markov chain ends in state 0.
ii) Determine the mean time to absorption.

Q3: $[3+4]$
a) Let $\mathrm{X}=\left\{\begin{array}{ll}0 & \text { if } \mathrm{N}=0 \\ \xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{N}} & \text { if } \mathrm{N}>0\end{array}\right\}$ be a random sum and assume that $\mathrm{E}\left(\xi_{k}\right)=\mu, \mathrm{E}(\mathrm{N})=v$

Prove that $\mathrm{E}(\mathrm{X})=\mu v$
b) The number of accidents occurring in a factory in a week is a Poisson random variable with mean 2 . The number of individuals injured in different accidents is independently distributed, each with mean 3 and variance 4. Determine the mean and variance of the number of individuals injured in a weak.

Q1: [4+5]
a)
$\because \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \operatorname{Pr}\left\{\mathrm{X}_{n}=\mathrm{i}_{n} \mid \mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}}$ Definition of Markov
By repeating this argument $n-1$ times
$\therefore \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\mathrm{p}_{\mathrm{i}_{0}} \mathrm{P}_{\mathrm{i}_{0} \mathrm{i}_{1}} \mathrm{P}_{\mathrm{i}_{1} \mathrm{i}_{2}} \ldots \mathrm{P}_{\mathrm{i}_{n-2}-\mathrm{i}_{n-1}} \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{1+}}$ where $\mathrm{p}_{\mathrm{i}_{0}}=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$ is obtained from the initial distribution of the process. b)

1	0	1	2		
-1	0	0.4	0.5	$0.1\|\mid$	
0	0	0.4	0.5	0.1	
1	0.4	0.5	0.1	0	
2	0	0.4	0.5	$0.1 \\|$	

Where
$P_{i j}=\left\{\begin{array}{l}p r=\left(\xi_{n}=2-j\right), \mathrm{i} \leq 0 \quad \text { replenishment } \\ p r=\left(\xi_{n}=i-j\right), 0<\mathrm{i} \leq 2\end{array} \quad\right.$ without replenishment
Q2: $[3+6]$
a) $\mathrm{X}_{n}, n=0,1,2, \ldots$ denotes the weather of the nth day with $\mathrm{X}_{n}=1$ meaning "rainy" and $\mathrm{X}_{n}=2$ meaning "dry"

The probability of dry weather on $1^{\text {st }}$ June equals $\frac{5}{8}$
$\therefore \mathrm{P}^{0}=\left[\begin{array}{ll}\frac{3}{8} & \frac{5}{8}\end{array}\right]$ is the initial Prob. distribution

$$
\begin{aligned}
\mathbf{P}^{2} & =\left[\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right]\left[\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.48 & 0.52 \\
0.39 & 0.61
\end{array}\right]
\end{aligned}
$$

$\therefore \operatorname{Pr}\left(X_{2}=1\right)=P_{1}^{2}$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\frac{3}{8} & \frac{5}{8}
\end{array}\right]\left[\begin{array}{l}
0.48 \\
0.39
\end{array}\right] \\
& =0.4238
\end{aligned}
$$

b)
i)

$$
\left.\mathbf{P}=\begin{array}{c||ccc||}
& \begin{array}{ccc}
0 & 1 & 2 \\
0 \\
1 & 1 & 0
\end{array} & 0 \\
2 & 0.1 & 0.6 & 0.3 \\
2 & 0 & 1
\end{array} \right\rvert\,
$$

$u=p r\left\{X_{T}=0 \mid X_{0}=1\right\}$
$u_{1}=p_{10}+p_{11} u_{1}$
$u_{1}=0.1+0.6 u_{1}$
$\therefore u_{1}=u_{10}=\frac{1}{4}$ is the prob. that Markov chains ends in state 0
ii)

The mean time to absorption can be found as follows

$$
\begin{aligned}
& v=E\left\{T \mid X_{0}=1\right\} \\
& v_{1}=1+p_{11} v_{1} \\
& \Rightarrow \\
& v_{1}=1+0.6 v_{1} \\
& v_{1}=\frac{5}{2} \\
& \therefore v_{1}=v_{10}=\frac{5}{2}
\end{aligned}
$$

Q3: [3+4]
a)

The random sum is

$$
X=\left\{\begin{array}{ll}
0 & \text { if } \mathrm{N}=0 \\
\xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{N}} & \text { if } \mathrm{N}>0
\end{array}\right\}
$$

$$
\begin{aligned}
& \begin{aligned}
& \because \mathrm{E}(\mathrm{X})=\sum_{n=0}^{\infty} E[X \mid N=n] P_{N}(n) \\
&=\sum_{n=1}^{\infty} E\left[\xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{N}} \mid N=n\right] P_{N}(n) \\
&= \sum_{n=1}^{\infty} E\left[\xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{n}} \mid N=n\right] P_{N}(n) \ldots \text { Prop.of cond. expectation } \\
& \quad=\sum_{n=1}^{\infty} E\left[\xi_{1}+\xi_{2}+\ldots+\xi_{\mathrm{n}}\right] P_{N}(n), \text { where } \mathrm{N} \text { is independent of } \xi_{1}, \xi_{2}, \ldots
\end{aligned} \\
& \text { and } \because \mathrm{E}\left(\xi_{k}\right)=\mu, \mathrm{k}=1,2, \ldots, \mathrm{n} \\
& \begin{aligned}
\therefore \mathrm{E}(\mathrm{X}) & =\sum_{n=1}^{\infty} n \mu P_{N}(n) \\
\quad & =\mu \sum_{n=1}^{\infty} n P_{N}(n) \\
\quad & =\mu \mathrm{E}(\mathrm{~N}), \mathrm{E}(\mathrm{~N})=v
\end{aligned} \\
& \left.\begin{array}{l}
\therefore \mathrm{E}(\mathrm{X})
\end{array}\right) \mu v
\end{aligned}
$$

b)
$N \sim$ Poisson (2)
N is the \# of accidents in aweek
ξ_{k} is the \# of individuals injured for kth accident
$E\left(\xi_{k}\right)=3, \operatorname{var}\left(\xi_{k}\right)=4$
$E(N)=2, \operatorname{var}(N)=2$
$\therefore E(X)=\mu v=3(2)=6$
$\operatorname{var}(X)=v \sigma^{2}+\mu^{2} \tau^{2}$
$\therefore \operatorname{var}(X)=2(4)+9(2)=26$

