KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS
 FINAL EXAMINATION., SEM II: 1425-26
 MATH 384: Real Analysis II TIME: 3 H FULL MARKS: 50

Question \#1
(a) If $f:[a, b] \rightarrow \Re$ is a continuous function on $[a, b]$ then prove that it is integrable on $[a, b]$.
(b) Let $f:[0,2] \rightarrow \Re$ be defined by $f(x)=1$ if $x \neq 1$, and $f(1)=0$. Show that f is integrable on $[0,2]$ and calculate its integral. Is f a continuous function? Explain.
(c) Do you think that the composition of integrable functions is integrable?

Discuss.
Question \#2
(a) Let $f:[a, b] \rightarrow \Re$ be integrable on $[a, b]$, and let $|f(x)| \leq M$ for all $x \in[a, b]$.

Use the inequality

$$
\left((f(x))^{2}-(f(y))^{2} \leq 2 M|f(x)-f(y)|\right.
$$

for $x, y \in[a, b]$ to show that f^{2} is integrable on $[a, b]$.
(b) Let $f:[a, b] \rightarrow \Re$ be integrable on $[a, b]$ and let $F(x)=\int_{a}^{x} f$ for $x \in[a, b]$.

If f is continuous at a point $c \in[a, b]$ then show that F is differentiable at c and $F^{\prime}(c)=f(c)$.
Question \#3
(a) Show that the sequence $\left(\frac{x^{n}}{1+x^{n}}\right)$ does not converge on $[0,2]$ by showing that the limit function is not continuous on $[0,2]$.
(b) Let $g_{n}(x)=n x\left(1-x^{2}\right)$ for $x \in[0,1], n \in \mathbf{Z}^{+}$. Discuss the convergence of $\left(g_{n}\right)$ and $\left(\int_{0}^{1} g_{n} d x\right)$.
(c) Do you think that $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}\right) \cos n x$ converges uniformly on
\Re to a countinuous function? Discuss.
Question \#4
(a) Find the length of the set $\cup_{k=1}^{\infty}\left\{x: \frac{1}{2^{k}} \leq x<\frac{1}{2^{k-1}}\right\}$.
(b) Present the definition of Lebesgue outer measure. Show that (Lebesgue) outer measure of an interval I is its length, that is, $m^{*}(I)=l(I)$.
(c) What is σ-algebra? If \mathcal{D} is any class of subsets of X then show that there exists a smallest σ-algebra $\mathcal{A}(\mathcal{D})$ on X that contains \mathcal{D}.
Question \#5
(a) What do you mean by a measurable function? Prove that a constant function is measurable.
(b) If f is a non-negative measurable function then show that $f=0$ a.e.(almost everywhere) if and only if $\int f d x=0$.
(c) Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of non-negative measurable functions such that $\left\{f_{n}(x)\right\}$ is monotone increasing for each x. Let $f=\lim f_{n}$.
Prove that $\int f d x=\lim \int f_{n} d x$.

