KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS FINAL EXAMINATION., SEM II: 1425-26 MATH 384: Real Analysis II TIME: 3 H FULL MARKS: 50

Question #1

(a) If $f : [a, b] \to \Re$ is a continuous function on [a, b] then prove that it is integrable on [a, b].

(b) Let $f : [0,2] \to \Re$ be defined by f(x) = 1 if $x \neq 1$, and f(1) = 0. Show that f is integrable on [0,2] and calculate its integral. Is f a continuous function? Explain.

(c) Do you think that the composition of integrable functions is integrable? Discuss.

Question #2

(a) Let $f : [a, b] \to \Re$ be integrable on [a, b], and let $|f(x)| \le M$ for all $x \in [a, b]$. Use the inequality

$$((f(x))^2 - (f(y))^2 \le 2M|f(x) - f(y)|$$

for $x, y \in [a, b]$ to show that f^2 is integrable on [a, b].

(b) Let $f : [a, b] \to \Re$ be integrable on [a, b] and let $F(x) = \int_a^x f$ for $x \in [a, b]$. If f is continuous at a point $c \in [a, b]$ then show that F is differentiable at c and F'(c) = f(c).

Question #3

(a) Show that the sequence $\left(\frac{x^n}{1+x^n}\right)$ does not converge on [0,2] by showing that the limit function is not continuous on [0,2].

(b) Let $g_n(x) = nx(1-x^2)$ for $x \in [0,1]$, $n \in \mathbb{Z}^+$. Discuss the convergence of (g_n) and $(\int_0^1 g_n dx)$.

(c) Do you think that $\sum_{n=1}^{\infty} (\frac{1}{n^2}) \cos nx$ converges uniformly on \Re to a countinuous function? Discuss.

Question #4

(a) Find the length of the set $\bigcup_{k=1}^{\infty} \{x : \frac{1}{2^k} \le x < \frac{1}{2^{k-1}}\}.$

(b) Present the definition of Lebesgue outer measure. Show that (Lebesgue) outer measure of an interval I is its length, that is, $m^*(I) = l(I)$.

(c) What is σ -algebra? If \mathcal{D} is any class of subsets of X then show that there exists a smallest σ -algebra $\mathcal{A}(\mathcal{D})$ on X that contains \mathcal{D} .

Question #5

(a) What do you mean by a measurable function? Prove that a constant function is measurable.

(b) If f is a non-negative measurable function then show that

f = 0 a.e.(almost everywhere) if and only if $\int f dx = 0$.

(c) Let $\{f_n\}_{n\geq 1}$ be a sequence of non-negative measurable functions such that $\{f_n(x)\}$ is monotone increasing for each x. Let $f = \lim f_n$. Prove that $\int f dx = \lim \int f_n dx$.