Chapter 4

Vector Spaces

4.1 Vectors in R^{n}
4.2 Vector Spaces
4.3 Subspaces of Vector Spaces
4.4 Spanning Sets and Linear Independence

4.1 Vectors in R^{n}

- An ordered n-tuple:
a sequence of n real number $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
- n-space: R^{n}
the set of all ordered n-tuple
- Ex:

$$
\begin{aligned}
& n=1 \\
& \\
&=\text { set of all real number } \\
& n=2 \\
& \\
& \\
&=\text {-space } \\
&=2 \text {-space } \\
& \\
& n=3
\end{aligned} \quad \begin{aligned}
R^{3} & =3 \text {-space } \\
& =\text { set of all ordered triple of real numbers }\left(x_{1}, x_{2}, x_{3}\right) \\
n=4 & \\
& \\
R^{4} & =4 \text {-space } \\
& =\text { set of all ordered quadruple of real numbers }\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

- Notes:
(1) An n-tuple ($x_{1}, x_{2}, \cdots, x_{n}$) can be viewed as a point in R^{n} with the x_{i} 's as its coordinates.
(2) An n-tuple $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ can be viewed as a vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in R^{n} with the x_{i} 's as its components.
- Ex:

a point

a vector

$$
\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right), \mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

- Equal:

$$
\mathbf{u}=\mathbf{v} \quad \text { if and only if } \quad u_{1}=v_{1}, u_{2}=v_{2}, \cdots, u_{n}=v_{n}
$$

- Vector addition (the sum of \mathbf{u} and \mathbf{v}):

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right)
$$

- Scalar multiplication (the scalar multiple of \mathbf{u} by c):

$$
c \mathbf{u}=\left(c u_{1}, c u_{2}, \cdots, c u_{n}\right)
$$

- Notes:

The sum of two vectors and the scalar multiple of a vector in R^{n} are called the standard operations in R^{n}.

- Negative:

$$
-\mathbf{u}=\left(-u_{1},-u_{2},-u_{3}, \ldots,-u_{n}\right)
$$

- Difference:

$$
\mathbf{u}-\mathbf{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}, \ldots, u_{n}-v_{n}\right)
$$

- Zero vector:
$\mathbf{0}=(0,0, \ldots, 0)$
- Notes:
(1) The zero vector $\mathbf{0}$ in R^{n} is called the additive identity in R^{n}.
(2) The vector $-\mathbf{v}$ is called the additive inverse of \mathbf{v}.
- Thm 4.2: (Properties of vector addition and scalar multiplication) Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in R^{n}, and let c and d be scalars.
(1) $\mathbf{u}+\mathbf{v}$ is a vector in R^{n}
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(4) $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(5) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(6) $c \mathbf{u}$ is a vector in R^{n}
(7) $\mathrm{c}(\mathbf{u}+\mathbf{v})=\mathrm{cu}+\mathrm{c} \mathbf{v}$
(8) $(c+d) \mathbf{u}=c \mathbf{u}+\mathrm{d} \mathbf{u}$
(9) $c(\mathrm{du})=(c d) \mathbf{u}$
(10) $1(\mathbf{u})=\mathbf{u}$
- Ex 5: (Vector operations in R^{4})

Let $\mathbf{u}=(2,-1,5,0), \mathbf{v}=(4,3,1,-1)$, and $\mathbf{w}=(-6,2,0,3)$ be vectors in R^{4}. Solve \mathbf{x} for x in each of the following.
(a) $\mathbf{x}=2 \mathbf{u}-(\mathbf{v}+3 \mathbf{w})$
(b) $3(\mathbf{x}+\mathbf{w})=2 \mathbf{u}-\mathbf{v}+\mathbf{x}$

Sol: (a) $\mathbf{x}=2 \mathbf{u}-(\mathbf{v}+3 \mathbf{w})$

$$
\begin{aligned}
& =2 \mathbf{u}-\mathbf{v}-3 \mathbf{w} \\
& =(4,-2,10,0)-(4,3,1,-1)-(-18,6,0,9) \\
& =(4-4+18,-2-3-6,10-1-0,0+1-9) \\
& =(18,-11,9,-8)
\end{aligned}
$$

(b) $3(\mathbf{x}+\mathbf{w})=2 \mathbf{u}-\mathbf{v}+\mathbf{x}$

$$
3 \mathbf{x}+3 \mathbf{w}=2 \mathbf{u}-\mathbf{v}+\mathbf{x}
$$

$$
3 \mathbf{x}-\mathbf{x}=2 \mathbf{u}-\mathbf{v}-3 \mathbf{w}
$$

$$
2 \mathbf{x}=2 \mathbf{u}-\mathbf{v}-3 \mathbf{w}
$$

$$
\mathbf{x}=\mathbf{u}-\frac{1}{2} \mathbf{v}-\frac{3}{2} \mathbf{w}
$$

$$
=(2,1,5,0)+\left(-2, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}\right)+\left(9,-3,0, \frac{-9}{2}\right)
$$

$$
=\left(9, \frac{-11}{2}, \frac{9}{2},-4\right)
$$

- Thm 4.3: (Properties of additive identity and additive inverse)

Let \mathbf{v} be a vector in R^{n} and c be a scalar. Then the following is true.
(1) The additive identity is unique. That is, if $\mathbf{u}+\mathbf{v}=\mathbf{v}$, then $\mathbf{u}=\mathbf{0}$
(2) The additive inverse of \mathbf{v} is unique. That is, if $\mathbf{v}+\mathbf{u}=\mathbf{0}$, then $\mathbf{u}=-\mathbf{v}$
(3) $0 \mathrm{v}=\mathbf{0}$
(4) $c \mathbf{0}=\mathbf{0}$
(5) If $c \mathbf{v}=\mathbf{0}$, then $c=0$ or $\mathbf{v}=\mathbf{0}$
(6) $-(-\mathbf{v})=\mathbf{v}$

- Linear combination:

The vector \mathbf{x} is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{n}$, if it can be expressed in the form

$$
\mathbf{x}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{n} \mathbf{v}_{n} \quad c_{1}, c_{2}, \cdots, c_{n}: \text { scalar }
$$

- Ex 6:

Given $\mathbf{x}=(-1,-2,-2), \mathbf{u}=(0,1,4), \mathbf{v}=(-1,1,2)$, and $\mathbf{w}=(3,1,2)$ in R^{3}, find a, b, and c such that $\mathbf{x}=a \mathbf{u}+b \mathbf{v}+c \mathbf{w}$.

Sol:

$$
\begin{aligned}
&-b+3 c=-1 \\
& a+b=c=-2 \\
& 4 a+2 b+2 c=-2 \\
& \Rightarrow a=1, b=-2, c=-1
\end{aligned}
$$

Thus $\mathbf{x}=\mathbf{u}-2 \mathbf{v}-\mathbf{w}$

- Notes:

A vector $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in R^{n} can be viewed as:
a $1 \times n$ row matrix (row vector): $\mathbf{u}=\left[u_{1}, u_{2}, \cdots, u_{n}\right]$
or

(The matrix operations of addition and scalar multiplication give the same results as the corresponding vector operations)

Vector addition

$$
\begin{array}{rlrl}
\mathbf{u}+\mathbf{v} & =\left(u_{1}, u_{2}, \cdots, u_{n}\right)+\left(v_{1}, v_{2}, \cdots, v_{n}\right) & c \mathbf{u} & =c\left(u_{1}, u_{2}, \cdots, u_{n}\right) \\
& =\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right) & & =\left(c u_{1}, c u_{2}, \cdots, c u_{n}\right) \\
\mathbf{u}+\mathbf{v} & =\left[u_{1}, u_{2}, \cdots, u_{n}\right]+\left[v_{1}, v_{2}, \cdots, v_{n}\right] & c \boldsymbol{u} & =c\left[u_{1}, u_{2}, \cdots, u_{n}\right] \\
& =\left[u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right] & & =\left[c u_{1}, c u_{2}, \cdots, c u_{n}\right] \\
\mathbf{u}+\mathbf{v} & =\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] & c \mathbf{u}=c\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1} \\
c u_{2} \\
\vdots \\
c u_{n}
\end{array}\right]
\end{array}
$$

Keywords in Section 4.1:

- ordered n-tuple : زوج نوني مرتب
- n-space : فضـاء نوني
- equal : مساوي
- vector addition : جمع متجهي
- scalar multiplication : ضرب عددي
- negative : سالب
- difference : الفرق
- zero vector : متجه صفري
- additive identity : محايد جمعي
- additive inverse : معاكس جمعي

4.2 Vector Spaces

- Vector spaces:

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and every scalar (real number) c and d, then V is called a vector space.

Addition:

(1) $\mathbf{u}+\mathbf{v}$ is in V
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(3) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
(4) V has a zero vector $\mathbf{0}$ such that for every \mathbf{u} in $V, \mathbf{u}+\mathbf{0}=\mathbf{u}$
(5) For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$

Scalar multiplication:

(6) $c \mathbf{u}$ is in V.
(7) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(8) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(9) $c(d \mathbf{u})=(c d) \mathbf{u}$
(10) $1(\mathbf{u})=\mathbf{u}$

- Notes:
(1) A vector space consists of four entities:
a set of vectors, a set of scalars, and two operations
V : nonempty set
c : scalar
$+(\mathbf{u}, \mathbf{v})=\mathbf{u}+\mathbf{v}$: vector addition
- $(c, \mathbf{u})=c \mathbf{u}: \quad$ scalar multiplication
$(V,+, \bullet)$ is called a vector space
(2) $V=\{\boldsymbol{0}\}$: zero vector space
- Examples of vector spaces:
(1) n-tuple space: R^{n}

$$
\begin{aligned}
& \left(u_{1}, u_{2}, \cdots, u_{n}\right)+\left(v_{1}, v_{2}, \cdots, v_{n}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right) \text { vector addition } \\
& k\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\left(k u_{1}, k u_{2}, \cdots, k u_{n}\right) \quad \text { scalar multiplication }
\end{aligned}
$$

(2) Matrix space: $V=M_{m \times n}$ (the set of all $m \times n$ matrices with real values)

Ex: : $(m=n=2)$

$$
\begin{aligned}
{\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]+\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right]=\left[\begin{array}{ll}
u_{11}+v_{11} & u_{12}+v_{12} \\
u_{21}+v_{21} & u_{22}+v_{22}
\end{array}\right] \quad \text { vector addition } } \\
k\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]=\left[\begin{array}{ll}
k u_{11} & k u_{12} \\
k u_{21} & k u_{22}
\end{array}\right] \quad \text { scalar multiplication }
\end{aligned}
$$

(3) n-th degree polynomial space: $V=P_{n}(x)$ (the set of all real polynomials of degree n or less)

$$
\begin{aligned}
p(x)+q(x) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n} \\
k p(x) & =k a_{0}+k a_{1} x+\cdots+k a_{n} x^{n}
\end{aligned}
$$

(4) Function space: $V=c(-\infty, \infty)$ (the set of all real-valued continuous functions defined on the entire real line.)

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \\
(k f)(x)=k f(x)
\end{gathered}
$$

- Thm 4.4: (Properties of scalar multiplication)

Let \mathbf{v} be any element of a vector space V, and let c be any scalar. Then the following properties are true.
(1) $0 \mathbf{v}=\mathbf{0}$
(2) $c \mathbf{0}=\mathbf{0}$
(3) If $c \mathbf{v}=\mathbf{0}$, then $c=0$ or $\mathbf{v}=\mathbf{0}$
(4) $(-1) \mathbf{v}=-\mathbf{v}$

- Notes: To show that a set is not a vector space, you need only find one axiom that is not satisfied.
- Ex 6: The set of all integer is not a vector space.

Pf:

$$
1 \in V, \frac{1}{2} \in R
$$

- Ex 7: The set of all second-degree polynomials is not a vector space.

$$
\text { Pf: Let } p(x)=x^{2} \text { and } q(x)=-x^{2}+x+1
$$

$$
\Rightarrow p(x)+q(x)=x+1 \notin V
$$

(it is not closed under vector addition)

- Ex 8:
$V=R^{2}=$ the set of all ordered pairs of real numbers
vector addition: $\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$
scalar multiplication: $c\left(u_{1}, u_{2}\right)=\left(c u_{1}, 0\right)$
Verify V is not a vector space.
Sol:
$\because 1(1,1)=(1,0) \neq(1,1)$
\therefore the set (together with the two given operations) is not a vector space

Keywords in Section 4.2:

- vector space : فضاء siجهات
- n-space : فضاء نوني
- matrix space : فضاء مصفو فات
- polynomial space : فضاء متعددات الحدود
- function space : فضـاء الدو ال

4.3 Subspaces of Vector Spaces

- Subspace:

$$
\left.\begin{array}{l}
(V,+, \bullet) \quad: \text { a vector space } \\
W \neq \phi \\
W \subseteq V
\end{array}\right\}: \text { a nonempty subset }
$$

$(W,+, \bullet):$ a vector space (under the operations of addition and scalar multiplication defined in V)
$\Rightarrow W$ is a subspace of V

- Trivial subspace:

Every vector space V has at least two subspaces.
(1) Zero vector space $\{0\}$ is a subspace of V.
(2) V is a subspace of V.

- Thm 4.5: (Test for a subspace)

If W is a nonempty subset of a vector space V, then W is
a subspace of V if and only if the following conditions hold.
(1) If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u}+\mathbf{v}$ is in W.
(2) If \mathbf{u} is in W and c is any scalar, then $c \mathbf{u}$ is in W.

- Ex: Subspace of R^{2}
(1) $\{\boldsymbol{0}\} \quad \boldsymbol{0}=(0,0)$
(2) Lines through the origin
(3) R^{2}
- Ex: Subspace of R^{3}
(1) $\{\boldsymbol{0}\} \quad \mathbf{0}=(0,0,0)$
(2) Lines through the origin
(3) Planes through the origin
(4) R^{3}
- Ex 2: (A subspace of $M_{2 \times 2}$)

Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of the vector space $M_{2 \times 2}$, with the standard operations of matrix addition and scalar multiplication.

Sol:

$\because W \subseteq M_{2 \times 2} \quad M_{2 \times 2}:$ vector sapces
Let $A_{1}, A_{2} \in W \quad\left(A_{1}^{T}=A_{1}, A_{2}^{T}=A_{2}\right)$
$A_{1} \in W, A_{2} \in W \Rightarrow\left(A_{1}+A_{2}\right)^{T}=A_{1}^{T}+A_{2}^{T}=A_{1}+A_{2} \quad\left(A_{1}+A_{2} \in W\right)$
$k \in R, A \in W \Rightarrow(k A)^{T}=k A^{T}=k A$
$\therefore W$ is a subspace of $M_{2 \times 2}$

- Ex 3: (The set of singular matrices is not a subspace of $M_{2 \times 2}$)

Let W be the set of singular matrices of order 2 . Show that W is not a subspace of $M_{2 \times 2}$ with the standard operations.

Sol:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \in W, B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \in W \\
& \therefore A+B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \notin W
\end{aligned}
$$

$\therefore W_{2}$ is not a subspace of $M_{2 \times 2}$

- Ex 4: (The set of first-quadrant vectors is not a subspace of R^{2})

Show that $W=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0\right.$ and $\left.x_{2} \geq 0\right\}$, with the standard operations, is not a subspace of R^{2}.

Sol:
Let $\mathbf{u}=(1,1) \in W$
$\because(-1) \mathbf{u}=(-1)(1,1)=(-1,-1) \notin W$
(not closed under scalar multiplication)
$\therefore W$ is not a subspace of R^{2}

Keywords in Section 4.3:

- subspace : فضاء جزئي
- trivial subspace : فضاء جزئي بسبط

4.4 Spanning Sets and Linear Independence

- Linear combination:

A vector \mathbf{v} in a vector space V is called a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}$ in V if \mathbf{v} can be written in the form

$$
\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\ldots+c_{k} \mathbf{u}_{k} \quad c_{1}, c_{2}, \cdots, c_{k}: \text { scalars }
$$

- Ex 2-3: (Finding a linear combination)

$$
\mathbf{v}_{1}=(1,2,3) \quad \mathbf{v}_{2}=(0,1,2) \quad \mathbf{v}_{3}=(-1,0,1)
$$

Prove (a) $\mathbf{w}=(1,1,1)$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$
(b) $\mathbf{w}=(1,-2,2)$ is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$

Sol:
(a) $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$

$$
\begin{gathered}
(1,1,1)=c_{1}(1,2,3)+c_{2}(0,1,2)+c_{3}(-1,0,1) \\
=\left(c_{1}-c_{3}, 2 c_{1}+c_{2}, 3 c_{1}+2 c_{2}+c_{3}\right) \\
c_{1}-c_{3}=1 \\
\Rightarrow 2 c_{1}+c_{2}=1 \\
3 c_{1}+2 c_{2}+c_{3}=1
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 1
\end{array}\right] \xrightarrow{\text { Guass-Jordan Elimination }}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow c_{1}=1+t, c_{2}=-1-2 t, c_{3}=t
\end{aligned}
$$

(this system has infinitely many solutions)

$$
\stackrel{t=1}{\Rightarrow} \mathbf{w}=2 \mathbf{v}_{1}-3 \mathbf{v}_{2}+\mathbf{v}_{3}
$$

(b)

$$
\begin{aligned}
& \mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} \\
& \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & -2 \\
3 & 2 & 1 & 2
\end{array}\right] \xrightarrow{\text { Guass-Jordan Elimination }}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 7
\end{array}\right]
\end{aligned}
$$

\Rightarrow this system has no solution $(\because 0 \neq 7)$

$$
\Rightarrow \mathbf{w} \neq c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}
$$

- the span of a set: span (S)

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{k}}\right\}$ is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S,

$$
\operatorname{span}(S)=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k} \mid \forall c_{i} \in R\right\}
$$

(the set of all linear combinations of vectors in S)

- a spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors in a given set S, then S is called a spanning set of the vector space.

- Notes:

$$
\begin{aligned}
& \operatorname{span}(S)=V \\
& \Rightarrow S \text { spans (generates) } V \\
& V \text { is spanned (generated) by } S \\
& S \text { is a spanning set of } V
\end{aligned}
$$

- Notes:
(1) $\operatorname{span}(\phi)=\{\mathbf{0}\}$
(2) $S \subseteq \operatorname{span}(S)$
(3) $S_{1}, S_{2} \subseteq V$

$$
S_{1} \subseteq S_{2} \Rightarrow \operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)
$$

- Linear Independent (L.I.) and Linear Dependent (L.D.):
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}:$ a set of vectors in a vector space V
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$
(1) If the equation has only the trivial solution $\left(c_{1}=c_{2}=\cdots=c_{k}=0\right)$ then S is called linearly independent.
(2) If the equation has a nontrivial solution (i.e., not all zeros), then S is called linearly dependent.
- Notes:
(1) ϕ is linearly independent
(2) $\mathbf{0} \in S \Rightarrow S$ is linearly dependent.
(3) $\mathbf{v} \neq \mathbf{0} \Rightarrow\{\mathbf{v}\}$ is linearly independent
(4) $S_{1} \subseteq S_{2}$
S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent
- Ex 8: (Testing for linearly independent)

Determine whether the following set of vectors in R^{3} is L.I. or L.D.

$$
S=\{(1,2,3),(0,1,2),(-2,0,1)\}
$$

Sol:

$$
\begin{aligned}
& c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0} \Rightarrow \begin{array}{cc}
c_{1} \quad-2 c_{3}=0 \\
2 c_{1}+c_{2}+ \\
3 c_{1}+2 c_{2}+c_{3}=0
\end{array} \\
& \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \xrightarrow[\text { Gauss - Jordan Elimination }]{ }\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \Rightarrow c_{1}=c_{2}=c_{3}=0 \text { (only the trivial solution) } \\
& \Rightarrow S \text { is linearly independent }
\end{aligned}
$$

- Ex 9: (Testing for linearly independent)

Determine whether the following set of vectors in P_{2} is L.I. or L.D.

Sol:

$$
S=\left\{1+x-2 x^{2}, 2+5 x-x^{2}, x+x^{2}\right\}
$$

$$
\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}
$$

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}
$$

i.e. $c_{1}\left(1+x-2 x^{2}\right)+c_{2}\left(2+5 x-x^{2}\right)+c_{3}\left(x+x^{2}\right)=0+0 x+0 x^{2}$
$\Rightarrow \begin{gathered}c_{1}+2 c_{2}=0 \\ c_{1}+5 c_{2}+c_{3}=0 \\ -2 c_{1}-c_{2}+c_{3}=0\end{gathered} \Rightarrow\left[\begin{array}{ccc|c}1 & 2 & 0 & 0 \\ 1 & 5 & 1 & 0 \\ -2 & -1 & 1 & 0\end{array}\right] \xrightarrow{\text { G.J. }}\left[\begin{array}{lll|l}1 & 2 & 0 & 0 \\ 1 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
\Rightarrow This system has infinitely many solutions.
(i.e., This system has nontrivial solutions.)
$\Rightarrow S$ is linearly dependent.
(Ex: $c_{1}=2, c_{2}=-1, c_{3}=3$)

- Ex 10: (Testing for linearly independent)

Determine whether the following set of vectors in 2×2 matrix space is L.I. or L.D.

$$
\begin{gathered}
S=\left\{\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]\right\} \\
\mathbf{v}_{1} \quad \mathbf{v}_{2} \mathbf{\mathbf { v } _ { 3 }}
\end{gathered}
$$

Sol:

$$
\begin{aligned}
& c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0} \\
& c_{1}\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]+c_{2}\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right]+c_{3}\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 2 c_{1}+3 c_{2}+c_{3}=0 \\
& c_{1} \quad=0 \\
& 2 c_{2}+2 c_{3}=0 \\
& c_{1}+c_{2}=0 \\
& \Rightarrow\left[\begin{array}{lll|l}
2 & 3 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{\text { Gauss - Jordan Elimination }}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$\Rightarrow c_{1}=c_{2}=c_{3}=0$ (This system has only the trivial solution.)
$\Rightarrow S$ is linearly independent.

Keywords in Section 4.4:

- linear combination : تركبب خطي
- spanning set : مجمو عة المدى

ع trivial solution : حل بسيط

- linear independent : الاستقالا الخطي
- linear dependent : الاعتماد الخطي

