Phys 201

Matrices and Determinants

1.1 Matrices

1.2 Operations of matrices
1.3 Types of matrices
1.4 Properties of matrices
1.5 Determinants
1.6 Inverse of a 3×3 matrix

1.1 Matrices

$$
A=\left[\begin{array}{ccc}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 1 & 4 \\
4 & 7 & 6
\end{array}\right]
$$

Both A and B are examples of matrix. A matrix is a rectangular array of numbers enclosed by a pair of bracket.

Why matrix?

1.1 Matrices

Consider the following set of equations:
$\{x+y=7$, It is easy to show that $x=3$ and $3 x-y=5 . \quad y=4$.
How about solving $\left\{\begin{array}{c}x+y-2 z=7, \\ 2 x-y-4 z=2, \\ -5 x+4 y+10 z=1, \\ 3 x-y-6 z=5 .\end{array}\right.$
Matrices can help...

1.1 Matrices

In the matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & \ddots & \\
a_{m 1} & a_{m 2} & & a_{m n}
\end{array}\right]
$$

-numbers $a_{i j}$ are called elements. First subscript indicates the row; second subscript indicates the column. The matrix consists of mn elements
-It is called "the $m \times n$ matrix $A=\left[a_{i j}\right]$ " or simply "the matrix A " if number of rows and columns are understood.

1.1 Matrices

Square matrices

-When $m=n$, i.e., $A=\left[\begin{array}{cccc}a_{1} & a_{2} & \cdots & a_{1 n} \\ a_{22} & a_{22} & & a_{2 n} \\ \vdots & & \ddots & \\ a_{n 1} & a_{n 2} & & a_{m 1}\end{array}\right]$
" A is called a "square matrix of order n " or " n-square matrix"
-elements $a_{11}, a_{22}, a_{33}, \ldots, a_{n n}$ called diagonal elements.

- $\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\ldots+a_{m n}$ is called the trace of A.

1.1 Matrices

Equal matrices

- Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are said to be equal $(A=B)$ iff each element of A is equal to the corresponding element of B, i.e., $a_{i j}=b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$.
-iff pronouns "if and only if"
if $A=B$, it implies $a_{i j}=b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$;
if $a_{i j}=b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq n$, it implies $A=B$.

1.1 Matrices

Equal matrices

Example: $A=\left[\begin{array}{cc}1 & 0 \\ -4 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Given that $A=B$, find a, b, c and d.
if $A=B$, then $a=1, b=0, c=-4$ and $d=2$.

1.1 Matrices

Zero matrices

-Every element of a matrix is zero, it is called a zero matrix, i.e.,

$$
A=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & 0
\end{array}\right]
$$

1.2 Operations of matrices

Sums of matrices

-If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are $m \times n$ matrices, then $A+B$ is defined as a matrix $C=A+B$, where $C=\left[c_{i j}\right], c_{i j}=a_{i j}+b_{i j}$ for $1 \leq i \leq m, 1 \leq j \leq$
Example: if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 3 & 0 \\ -1 & 2 & 5\end{array}\right]$
Evaluate $A+B$ and $A-B$.

$$
\begin{aligned}
& A+B=\left[\begin{array}{ccc}
1+2 & 2+3 & 3+0 \\
0+(-1) & 1+2 & 4+5
\end{array}\right]=\left[\begin{array}{ccc}
3 & 5 & 3 \\
-1 & 3 & 9
\end{array}\right] \\
& A-B=\left[\begin{array}{ccc}
1-2 & 2-3 & 3-0 \\
0-(-1) & 1-2 & 4-5
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & 3 \\
1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

1.2 Operations of matrices

Sums of matrices

-Two matrices of the same order are said to be conformable for addition or subtraction.

- Two matrices of different orders cannot be added or subtracted, e.g.,

$$
\left[\begin{array}{ccc}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 3 & 1 \\
2 & 1 & 4 \\
4 & 7 & 6
\end{array}\right]
$$

are NOT conformable for addition or subtraction.

1.2 Operations of matrices

Scalar multiplication

-Let λ be any scalar and $A=\left[a_{i j}\right]$ is an $m \times n$ matrix. Then $\lambda A=\left[\lambda a_{i j}\right]$ for $1 \leq i \leq m, 1 \leq j \leq n$, i.e., each element in A is multiplied by λ.

Example: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right]$. Evaluate $3 A$.

$$
3 A=\left[\begin{array}{lll}
3 \times 1 & 3 \times 2 & 3 \times 3 \\
3 \times 0 & 3 \times 1 & 3 \times 4
\end{array}\right]=\left[\begin{array}{ccc}
3 & 6 & 9 \\
0 & 3 & 12
\end{array}\right]
$$

-In particular, $\lambda=-1$, i.e., $-A=\left[-a_{i j}\right]$. It's called the negative of A. Note: $A-A=0$ is a zero matrix

1.2 Operations of matrices

Properties

Matrices A, B and C are conformable,
$-A+B=B+A$
(commutative law)

- $A+(B+C)=(A+B)+C \quad$ (associative law)
$-\lambda(A+B)=\lambda A+\lambda B$, where λ is a scalar
(distributive law)

Can you prove them?

1.2 Operations of matrices

Properties

Example: Prove $\lambda(A+B)=\lambda A+\lambda B$.
Let $C=A+B$, so $c_{i j}=a_{i j}+b_{i j}$.
Consider $\lambda c_{i j}=\lambda\left(a_{i j}+b_{i j}\right)=\lambda a_{i j}+\lambda b_{i j}$, we have, $\lambda C=\lambda A+\lambda B$.

Since $\lambda C=\lambda(A+B)$, so $\lambda(A+B)=\lambda A+\lambda B$

1.2 Operations of matrices

Matrix multiplication

-If $A=\left[a_{i j}\right]$ is a $m \times p$ matrix and $B=\left[b_{i j}\right]$ is a $p \times n$ matrix, then $A B$ is defined as a $m \times n$ matrix $C=A B$, where $C=\left[c_{i j}\right]$ with
$c_{i j}=\sum_{k=1}^{r} a_{i k} b_{k j}=a_{i i} b_{1 j}+a_{i i} b_{2 j}+\ldots+a_{i p} b_{p j}$ for $1 \leq i \leq m, 1 \leq j \leq n$.
Example: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 2 \\ 2 & 3 \\ 5 & 0\end{array}\right]$ and $C=A B$.
Evaluate c_{21}.

$$
c_{21}=0 \times(-1)+1 \times 2+4 \times 5=22
$$

1.2 Operations of matrices

Matrix multiplication

Example: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 2 \\ 2 & 3 \\ 5 & 0\end{array}\right]$, Evaluate $C=$
$A B$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
2 & 3 \\
5 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{c}
c_{11}=1 \times(-1)+2 \times 2+3 \times 5=18 \\
c_{12}=1 \times 2+2 \times 3+3 \times 0=8 \\
c_{21}=0 \times(-1)+1 \times 2+4 \times 5=22 \\
c_{22}=0 \times 2+1 \times 3+4 \times 0=3
\end{array}\right.} \\
& C=A B=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
2 & 3 \\
5 & 0
\end{array}\right]=\left[\begin{array}{cc}
18 & 8 \\
22 & 3
\end{array}\right]
\end{aligned}
$$

1.2 Operations of matrices

Matrix multiplication

-In particular, A is a $1 \times m$ matrix and
B is a $m \times 1$ matrix, i.e.,

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 m}
\end{array}\right] \quad B=\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{m 1}
\end{array}\right]
$$

then $C=A B$ is a scalar. $C=\sum_{k=1}^{m} a_{1 k} b_{k 11}=a_{11} b_{11}+a_{12} b_{21}+\ldots+a_{1 m} b_{m 1}$

1.2 Operations of matrices

Matrix multiplication

-BUT $B A$ is a $m \times m$ matrix!

$$
B A=\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{m 1}
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 m}
\end{array}\right]=\left[\begin{array}{cccc}
b_{11} a_{11} & b_{11} a_{12} & \ldots & b_{11} a_{1 m} \\
b_{21} a_{11} & b_{21} a_{12} & & b_{21} a_{1 m} \\
\vdots & & \ddots & \\
b_{m 1} a_{11} & b_{m 1} a_{12} & & b_{m 1} a_{1 m}
\end{array}\right]
$$

-So $A B \neq B A$ in general !

1.2 Operations of matrices

Properties

Matrices A, B and C are conformable,

- $A(B+C)=A B+A C$
- $(A+B) C=A C+B C$
- $A(B C)=(A B) C$
- $A B \neq B A$ in general
N
N $A B=0$ NOT necessarily imply $A=0$ or
ㅁ $-A B=A C$ NOT necessarily imply $B=C$

1.2 Operations of matrices

Properties

Example: Prove $A(B+C)=A B+A C$ where A, B and C are n-square matrices
Let $X=B+C$, so $x_{i j}=b_{i j}+c_{i j}$. Let $Y=A X$, then

$$
\begin{aligned}
y_{i j} & =\sum_{k=1}^{n} a_{k j} x_{k j}=\sum_{k=1}^{n} a_{k k}\left(b_{k j}+c_{k j}\right) \\
& =\sum_{k=1}^{n}\left(a_{k j} b_{k j}+a_{k k} c_{k j}\right)=\sum_{k=1}^{n} a_{k} b_{k j}+\sum_{k=1}^{n} a_{k} c_{k j}
\end{aligned}
$$

So $Y=A B+A C$; therefore, $A(B+C)=A B+A C$
1.3 Types of matrices
-Identity matrix
-The inverse of a matrix
-The transpose of a matrix

- Symmetric matrix
-Orthogonal matrix

1.3 Types of matrices

Identity matrix

- A square matrix whose elements $a_{i j}=0$, for $i>j$ is called upper triangular, i.e., $\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ 0 & a_{22} & & a_{2 n} \\ \vdots & & \ddots & \\ 0 & 0 & & a_{m n}\end{array}\right]$
- A square matrix whose elements $a_{i j}=0$, for $i<j$ is called lower triangular, i.e., $\left[\begin{array}{cccc}a_{11} & 0 & \ldots & 0 \\ a_{21} & a_{22} & & 0 \\ \vdots & & \ddots & \\ a_{n 1} & a_{n 2} & & a_{n 1}\end{array}\right]$

1.3 Types of matrices

Identity matrix

-Both upper and lower triangular, i.e., $a_{i j}=0$, for $i \neq j$, i.e.,

$$
D=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & a_{n n}
\end{array}\right]
$$

is called a diagonal matrix, simply
$D=\operatorname{diag}\left[a_{11}, a_{22}, \ldots, a_{n n}\right]$
1.3 Types of matrices

Identity matrix

-In particular, $a_{11}=a_{22}=\ldots=a_{n n}=1$, the matrix is called identity matrix.
-Properties: $A I=I A=A$
Examples of identity matrices: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

1.3 Types of matrices

Special square matrix

- $A B \neq B A$ in general. However, if two square matrices A and B such that $A B=B A$, then A and B are said to be commute.

Can you suggest two matrices that must

 commute with a square matrix A ?```
." 'x!山tou 人t!+uap! aपt 'flast! V:su\forall
```

-If $A$ and $B$ such that $A B=-B A$, then $A$ and $B$ are said to be anti-commute.

### 1.3 Types of matrices

## The inverse of a matrix

-If matrices $A$ and $B$ such that $A B=B A=I$, then $B$ is called the inverse of $A$ (symbol: $A^{-1}$ ); and $A$ is called the inverse of $B$ (symbol: $B^{-1}$ ).
Example: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4\end{array}\right] \quad B=\left[\begin{array}{ccc}6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
Show $B$ is the the inverse of matrix $A$.
Ans: Note that $A B=B A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Can you show the details?

### 1.3 Types of matrices

 The transpose of a matrix-The matrix obtained by interchanging the rows and columns of a matrix $A$ is called the transpose of $A$ (write $A^{T}$ ).
Example: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
The transpose of $A$ is $A^{T}=\left[\begin{array}{ll}2 & 5 \\ 3 & 6\end{array}\right]$
-For a matrix $A=\left[a_{i j}\right]$, its transpose $A^{T}=\left[b_{i j}\right]$, where $b_{i j}=a_{j i}$.

### 1.3 Types of matrices

## Symmetric matrix

- A matrix $A$ such that $A^{T}=A$ is called symmetric, i.e., $a_{j i}=a_{i j}$ for all $i$ and $j$.
$-A+A^{T}$ must be symmetric. Why?
Example: $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & -5 \\ 3 & -5 & 6\end{array}\right]$ is symmetric.
-A matrix $A$ such that $A^{T}=-A$ is called skewsymmetric, i.e., $a_{j i}=-a_{i j}$ for all $i$ and $j$.
- $A$ - $A^{T}$ must be skew-symmetric. Why?


### 1.3 Types of matrices

## Orthogonal matrix

- A matrix $A$ is called orthogonal if $A A^{T}=A^{T} A=$ I, i.e., $A^{T}=A^{-1}$
$\left[\begin{array}{lll}1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2}\end{array}\right]$
$\left.\begin{array}{l}\text { Example: prove that } A=\left[\begin{array}{ccc}1 / \sqrt{3} & -2 / \sqrt{6} & 0 \\ \text { orthogonal. } & 1 / \sqrt{3} & 1 / \sqrt{6}\end{array} 1 / \sqrt{2}\right.\end{array}\right]$ is
Since, $A^{T}=\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 1 / \sqrt{6} & -2 / \sqrt{6} & 1 / \sqrt{6} \\ -1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right]$. Hence, $A A^{T}=A^{T} A=I$.
We'll see that orthogonal matrix represents a rotation in fact!


### 1.4 Properties of matrix

$$
\begin{aligned}
& (A B)^{-1}=B^{-1} A^{-1} \\
& \left(A^{T}\right)^{T}=A \text { and }(\lambda A)^{T}=\lambda A^{T} \\
& (A+B)^{T}=A^{T}+B^{T} \\
& \cdot(A B)^{T}=B^{T} A^{T}
\end{aligned}
$$

### 1.4 Properties of matrix

Example: Prove $(A B)^{-1}=B^{-1} A^{-1}$.
Since $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=I$ and $\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=I$.
Therefore, $B^{-1} A^{-1}$ is the inverse of matrix $A B$.

### 1.5 Determinants

## Determinant of order 2

Consider a $2 \times 2$ matrix: $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
-Determinant of $A$, denoted $|A|$, is a number and can be evaluated by

$$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

### 1.5 Determinants

## Determinant of order 2

-easy to remember (for order 2 only)..

$$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|_{+}=+a_{11} a_{22}-a_{12} a_{21}
$$

Example: Evaluate the determinant: $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$

$$
\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=1 \times 4-2 \times 3=-2
$$

### 1.5 Determinants

The following properties are true for determinants of any order.
©If every element of a row (column) is zero, e.g., $\left|\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right|=1 \times 0-2 \times 0=0$, then $|A|=0$.


目 $A B|=|A|| B \mid$

### 1.5 Determinants

Example: Show that the determinant of any orthogonal matrix is either +1 or -1 .
For any orthogonal matrix, $A A^{T}=I$.
Since $\left|A A^{T}\right|=|A|\left|A^{T}\right|=1$ and $\left|A^{T}\right|=|A|$, so $|A|^{2}=1$ or $|A|= \pm 1$.

### 1.5 Determinants

For any $2 \times 2$ matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
Its inverse can be written as $A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right]$
Example: Find the inverse of $A=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$
The determinant of A is - 2
Hence, the inverse of A is $A^{-1}=\left[\begin{array}{cc}-1 & 0 \\ 1 / 2 & 1 / 2\end{array}\right]$
How to find an inverse for a $3 \times 3$ matrix?

### 1.5 Determinants of order 3

Consider an example: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
Its determinant can be obtained by:

$$
\begin{aligned}
|A|=\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right| & =3\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right|-6\left|\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right|+9\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right| \\
& =3(-3)-6(-6)+9(-3)=0
\end{aligned}
$$

You are encouraged to find the determinant by using other rows or columns

### 1.6 Inverse of a $3 \times 3$ matrix

Cofactor matrix of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6\end{array}\right]$
The cofactor for each element of matrix $A$ :

$$
\begin{array}{lll}
A_{11}=\left|\begin{array}{ll}
4 & 5 \\
0 & 6
\end{array}\right|=24 & A_{12}=-\left|\begin{array}{ll}
0 & 5 \\
1 & 6
\end{array}\right|=5 & A_{13}=\left|\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right|=-4 \\
A_{21}=\left|\begin{array}{ll}
2 & 3 \\
0 & 6
\end{array}\right|=-12 & A_{22}=\left|\begin{array}{ll}
1 & 3 \\
1 & 6
\end{array}\right|=3 & A_{23}=-\left|\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right|=2 \\
A_{31}=\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|=-2 & A_{32}=-\left|\begin{array}{ll}
1 & 3 \\
0 & 5
\end{array}\right|=-5 & A_{33}=\left|\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right|=4
\end{array}
$$

### 1.6 Inverse of a $3 \times 3$ matrix

Cofactor matrix of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6\end{array}\right]$ is then given
by:

$$
\left[\begin{array}{ccc}
24 & 5 & -4 \\
-12 & 3 & 2 \\
-2 & -5 & 4
\end{array}\right]
$$

### 1.6 Inverse of a $3 \times 3$ matrix

Inverse matrix of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6\end{array}\right]$ is given by:

$$
\begin{aligned}
A^{-1}=\frac{1}{|A|}\left[\begin{array}{ccc}
24 & 5 & -4 \\
-12 & 3 & 2 \\
-2 & -5 & 4
\end{array}\right]^{T} & =\frac{1}{22}\left[\begin{array}{ccc}
24 & -12 & -2 \\
5 & 3 & -5 \\
-4 & 2 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
12 / 11 & -6 / 11 & -1 / 11 \\
5 / 22 & 3 / 22 & -5 / 22 \\
-2 / 11 & 1 / 11 & 2 / 11
\end{array}\right]
\end{aligned}
$$

