ME 254: Materials Engineering

Chapter 6: Mechanical Properties of Metals

1st Semester 1435-1436 (Fall 2014)

Dr. Hamad F. Alharbi, <u>harbihf@ksu.edu.sa</u>

November 3, 2014

ISSUES TO ADDRESS...

- Stress and strain: What are they and why are they used instead of load and deformation?
- Elastic behavior: When loads are small, how much deformation occurs? What materials deform least?
- Plastic behavior: At what point does permanent deformation occur? What materials are most resistant to permanent deformation?
- Toughness and ductility: What are they and how do we measure them?

Elastic Deformation

Engineering Stress

• Shear stress, τ : Area, A

.:. Stress has units: $Pa = N/m^2$

Common States of Stress

• Torsion (a form of shear):

drive shaft

OTHER COMMON STRESS STATE

• Simple compression:

Engineering Strain

- Tensile strain: $e = \frac{\delta}{L_o}$ • Lateral strain: $e_L = \frac{\delta_L}{W_o}$ • Lateral strain:
- Shear strain:

$$\gamma = \Delta x / \gamma = \tan \theta$$

Strain is always dimensionless.

Linear Elastic Properties

• Modulus of Elasticity, E: (also known as Young's modulus)

Mechanical Properties

Slope of stress strain plot (which is proportional to the elastic modulus) depends on bond strength of metal

Table 6.1 Room-Temperature Elastic and Shear Moduli, and Poisson's Ratio for Various Metal Alloys

	Modulus of Elasticity		Shear	Poisson's	
Metal Alloy	GPa	10 ⁶ psi	GPa	10 ⁶ psi	Ratio
Aluminum	69	10	25	3.6	0.33
Brass	97	14	37	5.4	0.34
Copper	110	16	46	6.7	0.34
Magnesium	45	6.5	17	2.5	0.29
Nickel	207	30	76	11.0	0.31
Steel	207	30	83	12.0	0.30
Titanium	107	15.5	45	6.5	0.34
Tungsten	407	59	160	23.2	0.28

Young's Moduli: Comparison

See Example 6.1

Other Elastic Properties

• Special relations for isotropic materials:

$$G = \frac{E}{2(1+v)}$$
 $K = \frac{E}{3(1-2v)}$

Poisson's ratio, *v*

• Poisson's ratio, v:

$$v = -\frac{e_L}{e}$$

metals: $v \sim 0.33$ ceramics: $v \sim 0.25$ polymers: $v \sim 0.40$

Units: *E*: [GPa] or [psi] *v*: dimensionless

See Example 6.2

For Elastic Deformation

$$\boldsymbol{\epsilon} = \frac{l_i - l_0}{l_0} = \frac{\Delta l}{l_0}$$

Anelasticity

Time-dependent elastic deformation

Viscoelastic deformation

Plastic (Permanent) Deformation

Plastic (Permanent) Deformation

Plastic deformation

- ✓ Permanent deformation
- Breaking bonds, moving atoms, & reforming bonds
- *Elastic strain, ε ~ 0.5 %* (0.005)

✓ Mechanism (metals):Slip

(1) Yield strength σ_y 0.2% strain offset can be used to find σ_y

Yield Strength, σ_y

• Stress at which *noticeable* plastic deformation has occurred.

Yield Strength : Comparison

Values at room temperature

VMSE: Virtual Tensile Testing

Tensile Tests

Help

Main Menu

This module allows you to examine and compare the tensile engineering stress-strain behaviors for five metal alloys —alloys of titanium, tempered steel, aluminum, plain carbon steel, and a cast iron—and also four polymeric materials—high-density polyethylene (HDPE), nylon, phenol-formaldehyde (Bakelite), and a rubber.

Tensile Strength, TS

• Maximum stress on engineering stress-strain curve.

• Metals: occurs when noticeable necking starts.

(2) Tensile strength, TS

(3) Fracture strength

(4) Ductility:

A measure of degree of plastic deformation without fracture

Ductility measure:

$$\% \text{EL} = \left(\frac{l_f - l_0}{l_0}\right) \times 100$$

$$\% \mathbf{RA} = \left(\frac{A_0 - A_f}{A_0}\right) \times 100$$

Ductility

• Another ductility measure:

$$\% RA = \frac{A_o - A_f}{A_o} \times 100$$

(5) Toughness

A measure of the ability of a material to absorb energy up to fracture

Approximate by the area under the stress-strain curve

Metals: Tough => High strength + Good ductility

• Energy to break a unit volume of material

Brittle fracture: elastic energy Ductile fracture: elastic + plastic energy

(6) Resilience:

It is the capacity of a material to absorb energy when it is deformed elastically

Modulus of resilience, U_r

$$U_r = \int_0^{\epsilon_y} \sigma d\epsilon$$

Resilience, *U_r*

- Ability of a material to store energy
 - Energy stored best in elastic region

Elastic Strain Recovery

Hardness

A measure of a material's resistance to localized plastic deformation (e.g., a small dent or a scratch)

Method:

A small indenter is forced into the surface of a material to be tested, under controlled conditions of load and rate of application. The size of the resulting indentation is measured, which in turn is related to a hardness number.

Softer material >> larger indentation > lower hardness index number

HV = 703.9

Hardness

- Resistance to permanently indenting the surface.
- Large hardness means:
 - -- resistance to plastic deformation or cracking in compression.
 - -- better wear properties.

Hardness: Measurement

		Shape of Indentation			Formula for
Test	Indenter	Side View	Top View	Load	Hardness Number ^a
Brinell	10-mm sphere of steel or tungsten carbide		_;= d <	Р	$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$
Vickers microhardness	Diamond pyramid			Р	$HV = 1.854 P/d_1^2$
Knoop microhardness	Diamond pyramid	<i>l/b</i> = 7.11 <i>b/t</i> = 4.00		Р	$\mathbf{H}\mathbf{K} = 14.2P/l^2$
Rockwell and Superficial Rockwell	$\begin{cases} Diamond \\ cone \\ \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2} in. \\ diameter \\ steel spheres \end{cases}$			60 100 150 15 30 45	kg kg kg kg kg Superficial Rockwell kg

Hardness: Measurement

- Rockwell
 - No major sample damage
 - Each scale runs to 130 but only useful in range 20-100.
 - Minor load 10 kg
 - Major load 60 (A), 100 (B) & 150 (C) kg
 - A = diamond, B = 1/16 in. ball, C = diamond
- HB = Brinell Hardness
 - $TS (psia) = 500 \times HB$
 - $TS (MPa) = 3.45 \times HB$

Correlation Between Hardness and Tensile Strength (empirical)

True Stress and True Strain

True stress: The load F divided by the instantaneous cross-sectional area

$$\boldsymbol{\epsilon}_T = \ln \frac{l_i}{l_0}$$

It is obtained by integratin the incremental strain

$$_{T}=\int d\epsilon =\int\limits_{l_{0}}^{l_{f}}rac{dl}{l}=~\ln~rac{l_{f}}{l_{0}}$$

Constant volume:

Valid only to the onset of necking

 ϵ)

$$\sigma_i = A_0 l_0 \qquad >>> \qquad \sigma_T = \sigma(1 + \sigma_T)$$

$$\epsilon_T = \ln(1 + \epsilon)$$

Strain

Hardening

• An increase in σ_v due to plastic deformation.

• Curve fit to the stress-strain response:

The region of the true stress—strain curve from the onset of plastic deformation to the point at which necking begins may be approximated by

$$\sigma_T = K \epsilon_T^n$$

K and n are constant.

n: strain hardening exponent

		K		
Material	n	MPa	psi	
Low-carbon steel (annealed)	0.21	600	87,000	
4340 steel alloy (tempered @ 315°C)	0.12	2650	385,000	
304 stainless steel (annealed)	0.44	1400	205,000	
Copper (annealed)	0.44	530	76,500	
Naval brass (annealed)	0.21	585	85,000	
2024 aluminum alloy (heat treated—T3)	0.17	780	113,000	
AZ-31B magnesium alloy (annealed)	0.16	450	66,000	

See Example 6.5

6.4, 6.8, 6.9, 6.16, 6.21, 6.24, 6.25, 6.26, 6.27, 6.28, 6.30, 6.37, 6.38, 6.39, 6.40, 6.41, 6.44, 6.45