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Abstract: While the independent roles of vitamin D and sex hormones in skeletal health are well
established, the associations of vitamin D and its metabolites to sex hormones and their indices
are less investigated. In this observational study, clinical information of 189 Saudi postmenopausal
women aged ≥50 years old [N = 80 with normal bone mineral density (BMD), aged 53.3 ± 7.7 years
with body mass index (BMI)= 34.1kg/m2 ± 5.8, and N = 109 with low BMD (T-score −1.0 to
−2.5), aged 57.0 ± 8.2 years, BMI = 32.4kg/m2 ± 6.2] was extracted from an existing capital-wide
osteoporosis registry in Riyadh, Saudi Arabia. Data included were BMD scores, serum total 25(OH)D,
sex hormones, and bone turnover markers which were measured using commercially available assays.
Age- and BMI-adjusted comparisons revealed significantly higher parathyroid hormone (PTH) levels
as well as significantly lower testosterone and bioavailable testosterone in the low BMD group
than the normal BMD group (p-values 0.04, 0.02, and 0.03, respectively). Stepwise linear regression
showed that circulating testosterone levels accounted for 9.7% and 8.9% of the variances perceived in
bioavailable 25(OH)D and free 25(OH)D, respectively (p < 0.01), independent of other sex hormones,
sex hormone indices, and bone turnover markers. Our study suggests that androgens are significantly
associated with non-conventional vitamin D metabolites and these associations may have clinical
relevance in assessing risk for low BMD and osteoporosis in Arab postmenopausal women.
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1. Introduction

25-hydroxy vitamin D (25(OH)D) has an established role in calcium homeostasis
for optimal skeletal health. In recent decades and in the past year alone, scientific ad-
vances continue to provide accumulating evidence of the pleiotropic effects of 25(OH)D
on overall human health and its associations with extra-skeletal functions and clinical
conditions [1–3]. Vitamin D deficiency is affecting people globally and is deemed as a risk
factor for many chronic diseases [4,5], especially osteoporosis in adults [6,7] and rickets
in children [8]. While the Kingdom of Saudi Arabia is blessed with ample sunlight year-
round, 25(OH)D deficiency remains widespread in the population [9,10]. Furthermore,
the prevalence of osteoporosis is at 34–39.5% for 50–80-year-old women and 21.4–30.7% in
healthy men [11,12].

In humans, 85–90% of 25(OH)D is linked to vitamin D binding protein (VDBP),
whereas the remaining 10–15% are linked to albumin and lipoproteins, and the rest of the
<0.03% are considered free [13]. The sum of free and albumin-bound 25(OH)D represents
bioavailable 25(OH)D which reflects the level of 25(OH)D that is readily accessible for cells
or tissues [14]. In line with the “free-hormone hypothesis,” only the free-hormone fractions
can go to cells and produce biological activates [15,16].

It has been established that skeletal health is largely influenced by endogenous sex
hormones in both men and women, with estrogen levels largely dictating the extent of
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bone loss in women in both their reproductive and post-menopausal stages [17–19]. While
testosterone, another sex hormone, also has significant, albeit indirect effects in bone health
among men in particular, its low levels and associated risk in bone-related diseases such as
osteoporosis are largely due to lesser substrate availability for the conversion of estradiol,
which is the main bone health determinant in both sexes [18,20]. The carrier of these
hormones, known as the sex hormone binding globulin (SHBG), which is mainly produced
by the liver, is bound to sex hormones for transport to the target cells where they exert their
biological activities [21]. Like the sex hormones, SHBG levels have also been implicated in
bone diseases, but mostly age-related and limited to select skeletal sites [22].

Despite the established independent relationships of vitamin D and sex hormones in
human skeletal health, there are limited studies determining the associations of vitamin D
and its metabolites to sex hormones and their indices. Such studies may shed light on which
among the various vitamin D metabolites exert major influence on androgen physiology
which can, in turn, translate to better risk assessment and management of patients having
low bone density issues and associated osteoporosis risk. The present cross-sectional study
aims to fill this gap and determine such associations among postmenopausal Arab women
with or without established low bone density.

2. Results

The general characteristics of all 189 subjects with low bone mineral density (BMD)
and normal BMD are given in Table 1. Low BMD was observed in 57.7% of participants.
The low BMD group were significantly older and had significantly lower BMI than those
with normal BMD (p values <0.001). Worthy to note was that the mean BMI in both groups
fell in the obese range. Age- and BMI-adjusted comparisons revealed that the normal BMD
group had a significantly earlier onset of menarche (p = 0.006), older age at first pregnancy
(p = 0.005), and shorter duration of amenorrhea (p = 0.01) than those in the low BMD
group. As expected, T-scores and BMD values were significantly higher in the normal
BMD group than the low BMD group (adjusted p-values <0.001). No significant difference
was observed in the mean duration of menopause after adjustments (Table 1).

Table 1. General Clinical Characteristics of Participants according to Normal and Low Bone Mineral Density (BMD) Groups.

Clinical Parameters Normal Low BMD p-Values Adj. p-Values *

N 80 (42.3) 109 (57.7)

Vitamin D Deficiency (%) 36 (45.0) 43 (39.4)

Age (years) 53.3 ± 7.7 57.0 ± 8.2 <0.001

BMI (kg/m2) 34.1 ± 5.8 32.4 ± 6.2 <0.001

Age of menarche 13.0 ± 1.4 13.3 ± 1.6 0.001 0.006

Menopause (years) 9.6 ± 11.7 11.4 ± 10.6 0.01 0.30

Age during first pregnancy 19.7 ± 4.0 19.0 ± 3.6 0.006 0.005

Amenorrhea (years) 7.1 ± 6.0 9.7 ± 7.1 <0.001 0.01

T-score (Spine) 0.0 ± 0.8 −2.1 ± 0.9 <0.001 <0.001

T-Score (Femur) 0.6 ± 0.9 −0.8 ± 1.0 <0.001 <0.001

BMD (Spine) 1.21 ± 0.14 0.9 ± 0.1 <0.001 <0.001

BMD (Femur) 1.13 ± 0.13 0.9 ± 0.1 <0.001 <0.001

Note: Data presented as Mean ± SD. * p-value adjusted for age and BMI; p < 0.05 considered significant.

Table 2 shows the hormonal profiles of participants according to BMD status. Unad-
justed comparisons showed that the low BMD group had significantly higher 25(OH)D
levels than the normal group (p < 0.001) as well as higher levels of PTH (p = 0.002), SHBG
(p = 0.007), and FSH (p = 0.002). The normal BMD group on the other hand had significantly
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higher levels of testosterone (p = 0.002), estradiol (p = 0.02), free androgen index (FAI)
(p = 0.002), free estradiol index (FEI) (p = 0.007), free testosterone (FT) (p = 0.003), and
bioavailable testosterone (BT) (p = 0.003) than the low BMD group. The majority of the
parameters lost statistical significance after age and BMI adjustments were done with the
exceptions of PTH, being significantly higher in the low BMD group as compared to the
normal group (p = 0.04), and having significantly lower testosterone (p = 0.02) and BT levels
as well (p = 0.03) (Table 2).

Table 2. Hormonal characteristics of participants according to Normal and Low BMD groups.

Biochemical Parameters Reference Ranges Normal Low BMD p-Values Adj. p-Values *

N – 80 (42.3) 109 (57.7) – –

Corrected Calcium (mmol/L) 0.7–4.0 2.3 ± 0.2 2.3 ± 0.2 0.84 0.40

25(OH) D (nmol/L) 7.5–175.0 66.4 ± 34.2 73.5 ± 36.1 <0.001 0.18

Bioavailable 25(OH)D (nmol/L) # – 26.1 (13–51) 29.1 (14–49) 0.56 0.81

Free 25(OH)D (nmol/L) # – 30.2 (15–54.1) 33.4 (16–64) 0.42 0.62

VDBP (mg/mL) # 0.083–50.0 42.0 (7–105) 23.2 (6–106) 0.27 0.25

PTH (pg/mL) # 1.2–5000.0 10.6 (6–20) 15.4 (8–30) 0.002 0.04

SHBG (nmol/L) # 0.8–200.0 18.2 (0.4–34) 32.3 (1–57) 0.007 0.08

FSH (mIU/mL) # 0.1–200.0 30.7 (11–51) 40.6 (21–66) 0.002 0.29

Testosterone (ng/mL) # 0.02–15.0 0.7 (0.4–1) 0.6 (0.3–0.9) 0.007 0.02

Estradiol (pg/mL) # 5.0–4300.0 108.7 (43–247) 61.8 (33–196) 0.02 0.13

FAI # – 4.3 (1–182) 1.5 (0.6–39) 0.002 0.07

FEI # – 307.7
(142–24168) 182.2 (62–3988) 0.007 0.09

FT (nmol/L) # – 0.06 (0.04–0.17) 0.0 (0.0–0.1) 0.003 0.20

BT (pmol/L × 10−4) # – 2.8 (2–9) 2.0 (1–4) 0.002 0.03

Note: – indicates none; # indicates non-normal variables; VDBP, vitamin D binding protein; PTH, parathyroid hormone; SHBG, sex
hormone binding globulin; FSH, follicle stimulating hormone; FAI, free androgen index; FEI, free estradiol index; FT, free testosterone; BT,
bioavailable testosterone. * p-value adjusted for age and BMI; p < 0.05 considered significant.

Table 3 shows the age-and BMI-adjusted comparisons in bone turnover markers in
both groups and revealed no significant differences with the exception of N-telopeptides of
type I collagen (NTX) which were observed to be modestly higher in the normal BMD group
than the low BMD group at borderline significance (p = 0.05). The rest of the comparisons
are found in Table 3.

Table 3. Bone Turnover Markers of Participants according to Normal and Low BMD Groups.

Biochemical Parameters Reference Ranges Normal Low BMD p-Values Adj. p-Values *

N – 80 (42.3) 109 (57.7) – –

P1NP (ng/mL) # 5–1200 11.2 (5.0–30.0) 13.4 (5.0–27.5) 0.44 0.20

CTX (pg/mL) # 10–6000 10.0 (10.0–84.5) 20.0 (10.0–75.0) 0.42 0.16

NTX (nmol/L) # 20–3000 56.2 (42.6–75.5) 49.8 (35.5–65.2) 0.06 0.05

bALP (nmol/L) – 1.1 ± 0.3 1.1 ± 0.3 0.98 0.75

Note: – indicates none; # indicates non-normal variables; P1NP, (Procollagen 1 Intact N-Terminal Propeptide); CTX, carboxy-terminal
collagen; NTX, N-telopeptides of type I collagen; bALP, bone-specific alkaline phosphatase; * p-value adjusted for age and BMI; p < 0.05
considered significant.

Bivariate associations between vitamin D metabolites, sex hormones and bone turnover
markers in all participants are presented in Table 4. No significant associations were seen
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between total 25(OH)D and all parameters of interest with the exception of FSH which had
modest correlation (r = 0.17; p < 0.05).

Table 4. Correlation between vitamin D metabolites and measured parameters.

Parameters
Total 25(OH)D Bioavailable 25(OH)D Free 25(OH)D

All Normal Low BMD All Normal Low BMD All Normal Low BMD

SHBG 0.13 0.07 0.02 −0.27 ** −0.30 * −0.26 ** −0.21 ** −0.24 −0.20 *
FSH 0.17 * 0.16 0.08 −0.12 −0.23 −0.06 −0.09 −0.09 −0.08

Testosterone 0.10 0.21 0.04 0.38 ** 0.45 ** 0.34 ** 0.37 ** 0.44 ** 0.33 **
BT 0.04 0.14 0.07 0.38 ** 0.48 ** 0.35 ** 0.34 ** 0.41 ** 0.32 **
FT −0.01 0.11 0.05 0.33 ** 0.44 ** 0.30 ** 0.34 ** 0.46 ** 0.31 **

Estradiol 0.01 0.03 0.06 0.39 ** 0.46 ** 0.34 ** 0.45 ** 0.46 ** 0.43 **
FAI −0.05 0.04 0.03 0.34 ** 0.43 ** 0.32 ** 0.29 ** 0.35 ** 0.27 **
FEI −0.06 −0.04 0.05 0.35 ** 0.41 ** 0.33 ** 0.38 ** 0.40 ** 0.37 **

P1NP 0.07 0.13 0.03 −0.40 ** −0.35 ** −0.42 ** −0.41 ** −0.36 ** −0.43 **
CTX 0.09 −0.01 0.12 −0.23 ** −0.33 ** −0.19 −0.24 ** −0.35 ** −0.18
NTX −0.06 −0.09 −0.03 −0.05 −0.16 −0.01 −0.07 −0.19 −0.02
bALP −0.08 −0.16 −0.02 −0.11 −0.36 0.10 −0.12 −0.38 ** 0.11

Note: Data presented as Spearman correlation coefficient; * and ** indicate significance at 5% and 1%, respectively.

Stepwise linear regression using the different vitamin D metabolites as dependent
variables and sex hormones with bone turnover markers as independent variables revealed
that testosterone (ng/mL) explained 9.7% and 8.9% of the variances perceived in bio-
available 25(OH)D and free 25(OH)D, respectively (p < 0.01). No significant predictor was
seen in total 25(OH)D (not included in tables).

3. Discussion

The present study determined the associations of 25(OH) D metabolites with sex
hormone indices as well as bone turnover markers among Arab postmenopausal women
and found that sex hormones, testosterone in particular, are significantly associated with
free and bio-available 25(OH)D but not with total 25(OH)D, independent of other metabolic
markers assessed. Other findings indicated that in both normal and low BMD participants,
both bioavailable and free 25(OH)D correlated inversely with SHBG and positively with
other sex hormones including testosterone, bioavailable testosterone (BT), free testosterone
(FT), estradiol, free androgen index (FAI), and free estradiol index (FEI). The correlation of
25(OH)D with BMD may in part be attributed to sex hormone levels that were also related
to 25(OH)D metabolites. SHBG is a glycoprotein that binds sex steroids with high affinity,
regulating their bioavailability and entry to target cells [21]. SHBG play a role in numerous
diseases, containing osteoporosis in postmenopausal women [22].

In our study, there is a significant inverse association between SHBG and both free and
bioavailable 25(OH)D in both healthy and low BMD groups. Few studies examined this
correlation in women, and only one study stated that there was a significant relationship
between 25(OH)D deficiency and SHBG [23] This association, especially in the low BMD
group, suggests an increased risk of osteopenia and osteoporosis for people with high SHBG
who also have low free and bioavailable 25(OH)D not total 25(OH)D. The mechanisms for
this interaction are unclear. Generally, a high 25(OH)D level may reinforce the correlation
with SHBG, either through increased androgen synthesis [24] or through independent
pathophysiological mechanisms [25].

FSH is important in women’s ovarian functions and an inverse correlation between
FSH and 25(OH)D suggests a reduction in primordial follicles which may lead to early
menopause. As a result, low 25(OH)D levels may have opposing influences on ovarian
reserve in postmenopausal women. It was found that 25(OH)D was inversely correlated to
urinary FSH levels in post-menopausal women.

Pilz et al. found that 25(OH)D supplementation (3332 IU /day) for 1-year increased
total, free, and bioavailable testosterone levels [24], though another study found that
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25(OH)D supplementation was not related to increased testosterone levels [26]. In our
study, we found a significant positive relationship of 25(OH)D with total, bioavailable,
and free testosterone. Although both low total testosterone and low 25(OH)D levels can
be signs of poor health status, there is a causal role between 25(OH)D and testosterone
production. 25(OH)D exerts its influence on testicular Sertoli cells causing increased
testosterone production.

Estradiol was positively associated with free and bioavailable 25(OH)D in both healthy
and low BMD groups. Low estradiol level is one of the most important factors that cause
low VDBP levels in older women. Our results suggest that high estradiol is associated with
higher VDBP levels. High serum VDBP occurs only in post-menopausal women with high
estradiol levels. This might suggest that the interaction of estrogen with 25(OH)D depends
on DBP and menopausal status.

Another interesting finding in the present study was the significant correlation of
25(OH)D with FAI and FEI, signifying that 25(OH)D might play a part in androgen bioavail-
ability in postmenopausal women. Prospective investigations may further shed light on
the role of 25(OH)D in the bioavailability of androgens and its relation to BMD in post-
menopausal women. The correlation between 25(OH)D and sex hormone in our study
confirms the appropriateness of 25(OH)D supplementation in postmenopausal women as
a stimulator of endogenous 25(OH)D production. Furthermore, our results acknowledge
that 25(OH)D supplementation in postmenopausal women might have an effect on bone
metabolism, as well as on other body functions related to sex hormones actions.

The authors acknowledge several limitations. The cross-sectional design limits the
findings to being at best, suggestive, and therefore causality between the relationships
between 25(OH)D bioavailability and sex hormones needs to be further investigated
prospectively. Several major confounding variables for vitamin D such as season, sunlight
exposure, intake of vitamin D supplements, and lifestyle were not taken into consideration
and may affect the findings. The lack of information with respect to vitamin D intake is
vital and may partially explain the higher 25(OH)D levels in the low BMD group, although
previous observational studies from the same ethnic group demonstrate a significant
positive association between age and vitamin D status among adults.

4. Materials and Methods
4.1. Subjects

In this cross-sectional study, a total of 189 Saudi postmenopausal women aged
≥50 years old (N = 80 healthy control, N = 109 with low BMD) were randomly selected
from the existing osteoporosis registry of the Chair for Biomarkers of Chronic Diseases
(CBCD) in King Saud University (KSU), Saudi Arabia. In brief, this registry is a capital-
wide database involving more than 1500 participants from the outpatient clinics of King
Fahd Medical City, King Salman Hospital, and King Saud University Medical City, Riyadh,
Saudi Arabia, whose BMD measurements were assessed and recorded between 2013 and
2016 [27,28]. A generalized questionnaire was used to collect participants’ history (age,
medical history, disease status, etc.). Height, weight, and blood pressure were obtained
from all patients. Body mass index (BMI) was calculated (kg/m2).

4.2. Biochemical Analysis

Subjects were requested to visit their respective health centers after an overnight fast
(≥ 10 h). Fasting blood samples were collected and serum extracted. Extracted serum was
transferred to CBCD Biobank and stored at −80 ◦C until further analysis. Serum 25(OH)D
and sex hormones were measured using electrochemiluminescence immunoassay (Roche
Diagnostics, Mannheim, Germany). PTH was estimated by biochemical analyzer COBAS
e411 (Roche Diagnostics) using commercially available kits (intra-assay and inter-assay
CV’s of 2.7% and 6.5%, respectively). SHBG was measured with Roche Elecsys modular
analytics Cobas e411 using an electrochemiluminescence immunoassay where the lower
detection limit of this assay was 0.35 nmol/L and the intra-assay CV was 2.6–5.6%. FSH,
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testosterone, and estradiol were also quantified using the Elecsys Cobas e-411 commercially
available kits. The limits of detection for FSH, testosterone, and estradiol were 0.100 mIU/L,
0.025 ng/mL, and 5 pg/mL, respectively. Serum 25(OH)D was measured using Roche
Elecsys modular analytics (Cobas e411) and assessed using electrochemiluminescence
immunoassays (Roche Diagnostics, GmbH, Mannheim, Germany). Intra- and inter-assay
CV were 4% and 6.5%, respectively. Serum VDBP was determined by ELISA (R&D Systems)
with inter-assay CV (1.6–3.6%), and recovery of (98–103%). Free and bioavailable 25(OH)D
were calculated using the concentrations of total 25(OH)D, DBP, and albumin as previously
described [29]. Vitamin D deficiency was defined as 25(OH)D <50 nmol/L based on
regional guidelines. [30].

4.3. Anthropometrics and DXA

BMD (g/cm2) was recorded for all selected participants at the lumbar spine and femur
using Prodigy- (GE Healthcare, Chicago, IL, USA), dual-energy X-ray absorptiometry
(DXA) scans. T-Scores were recorded and those below −1.0 to −2.5 indicated low bone
mass based on national and regional guidelines [31,32].

4.4. Calculations Used

The following indices were calculated as follows:

FAI = Total testosterone/SHBG × 100

Free estrogen index (FEI) was calculated as:

FEI = Total estradiol/SHBG × 100

4.5. Statistical Analysis

SPSS version 16.5 (SPSS Inc., Chicago, IL, USA) was used for data analysis. Normal
continuous variables were presented as mean ± standard deviation and non-normal
variables were presented as median (1st quartile–3rd quartile). Non-normality was tested
using histogram and confirmed using Kolmogorov–Smirnov test. Significance differences
were tested using independent sample t-test and Mann–Whitney U test for normal and non-
normal variables, respectively. Analysis of covariance (ANCOVA) was used to determine
significant differences after adjusting for age and BMI. Spearman correlation coefficient was
used to determine the relationship between study parameters. Furthermore, multivariate
stepwise linear regression was used to identify variables independently associated with
free, bioavailable, and total 25(OH)D. Significance was set at p < 0.05.

5. Conclusions

To the best of our knowledge, this is the first study to determine the relationship of
25(OH)D metabolites with sex hormones and their indices among postmenopausal Arab
women. Androgens, particularly testosterone, are associated with bioavailable and free
25(OH)D, independent of other hormones, including bone turnover markers. The results
of this study suggest the clinical importance of other vitamin D metabolites related to hor-
monal regulation and associated osteoporosis risk among Arab post-menopausal women.
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