

Method of Enzyme Assay

To study the different methods for determining enzyme activity.

Enzyme assays: Are laboratory methods for measuring enzymatic activity.

- All enzyme assays measure either the consumption of substrate or production of product over time.
 - S _____ P + E

• Different enzymes require different estimation methods depending on the type of reaction catalyzed, the nature of S and P or coenzyme.

Methods of quantitatively following enzyme reactions

1.Fluorescence methods: Using a fluorometer.

** e.g. NAD⁺ and NADP⁺ do not fluoresence in their oxidized forms, but the reduced form have a blue fluorescence reduction reaction.

2.Manometric methods: Using a manometer.

** It is suitable for reactions in which one of the component is a gas. e.g. Oxidases (O_2 uptake), Decarboxylase(CO_2 output)

- 3. Eletrode Methods: Using a pH meter.
- ** Reactions which involve the production of acids where H⁺ conc. is measured.

4. Polarimetric Method: use polarimeter.

- ** For isomerases that convert one isomer to another.
- e.g. D-glucose \rightarrow L-glucose

5. Spectrophotometric methods.

In spectrophotometric assays, you follow the course of the reaction by measuring a change in how much light the assay solution absorbs.

Wavelength in this instrument is divided into:

-Invisible range(ultraviolet "UV") from 100 to 360 nm

[Quartz cuvette are used]

-Visible range (400 -700 nm) [Glass or plastic cuvette are used]

[If the light is in the visible region you can actually see a change in the color of the assay, these are called **colorimetric assays**]

What is blank solution?

It is a solution that contains everything except the compound to be measured.

When the Spectrophotometric methods can be used?

1- cases in which product absorb but not the substrate. e.g.

2- the Co-enzyme undergoes change in absorption upon reduction or oxidation

Oxidized form NAD NADP

If reduced form was product: increase the absorbance / min If reduced form was substrate : decrease the absorbance / min

Alanine transaminase (ALT)

- ALT is an enzyme that catalyzes a type of reaction (transamination) between an amino acid and α -keto acid.
- It is important in the production of various amino acids.

ALT diagnostic importance

- ALT is found in serum (at low level) but is most commonly is associated with the liver.
- thus , an elevated level ALT is a <u>sensitive index of</u> <u>acute hepatocellular injury.</u>
- Elevated serum ALT level are found in hepatitis, cirrhosis, and obstructive jaundice.

• NORMAL RANGE OF ALT:

(up to 42) U/L \rightarrow males (up to 32) U/L \rightarrow females

Enzyme assays can be split into two types:

□Continuous assays,

where the assay gives a <u>continuous reading</u> of activity.

Discontinuous (Endpoint) assays,

Where the reaction is <u>stopped</u> and then the concentration of substrates/products determined.

Both types of enzyme assays will be applied in this lab on ALT

Principle of Continuous Assay

1- ALT "present in serum sample" catalyzes the transfer of an amino group from alanine to α -ketoglutarate in the following reaction:

Alanine + α - ketoglutarate \rightarrow Pyruvate + glutamate

2- Then, the pyruvate formed in the reaction is reduced to L-Lactate by Lactate dehydrogenase (LDH) "found in ALT reagent".

Pyruvate + NADH+H⁺ \rightarrow L-Lactate+ NAD⁺ +H₂O

3- The absorbance at 340nm is measured each minute without stopping the reaction, resulting in <u>decreased</u> readings **due to the oxidation of NADH**

Principle

Pipette into clean and dry test tubes:

ALT Reagent	3 ml				
Pre-warm at 37°C for 3 minutes and add					
Serum Sample	0.2 ml	ml→ <i>µ</i> I (x 1000)			
Mix and incubated at 37 °C for 1 minute, then read					
absorbance (at 340 nm against distilled water) every minute					
for 3 minutes) and determine $\Delta A/min$					

Choose the following on the spectrophotometer:

2) Applications \rightarrow 2) Simple Kinetics \rightarrow wave length (340 nm) \rightarrow 1) Seconds \rightarrow Duration (180 sec = 3 min) \rightarrow Intervals (60 sec= 1 min) \rightarrow Print Data Table (off) \rightarrow Press start (2 times)

Time	Absorbanc	e 340nm	∆A/min=((A1-A2)+(A2-A3))/2
1 min	A1		
2 min	A2		
3 min	A3		

Calculations

ALT Activity (U/L) = $\Delta A/\min x 1768$ ALT Activity (U/L) =

Principle of Discontinuous Assay

• In this method **ALT** catalyzes the following reaction

Alanine + a-ketoglutarate \rightarrow pyruvate + glutamate

- ALT is assayed by following formation of **pyruvate**.
- The addition of acidic 2,4-dinitrophenylhydrazine (DNPH) stops the reaction and forms the 2,4dinitrophenylhydrazone. So that it may be measured at 546nm.

Method:

	BLANK	SAMPLE		
ALT Reagent	0.5 ml	0.5 ml		
Pre-warm at 37 °C for <u>5 minutes</u> and add:				
Distilled Water	0.1 ml	_		
Serum Sample	-	0.1 ml		
Mix, and incubate at 37 °C for exactly <u>30 minutes</u> , and add:				
Color Reagent (DNPH)	0.5 ml	0.5 ml		
Mix, and return at 37 °C for exactly <u>10 minutes</u> , then add:				
Color Developer (NaOH)	5.0 ml	5.0 ml		
Mix, and return to 37 °C for exactly <u>5 minutes</u> . Read absorbance of all tubes at 546nm against blank.				

- COLOR REAGENT contains 1 N Hydrochloric acid which causes burns.
- COLOR DEVELOPER contains 0.5 N Sodium hydroxide which is **corrosive**.

In case of contact, flush affected area with large amounts of water. Seek medical attention.

Results:

Absorbance at 546 nm	ALT activity (U/L)
0.025	2.5
0.050	5.5
0.075	9
0.100	12
0.125	17
0.150	21
0.175	25
0.2	30
0.225	35
0.250	41

- The data shown in the table is used to convert absorbance at 546 nm into enzymatic activity in U/L of serum.
- Draw graph using the data in table with absorbance on the Y- axis and enzymatic activity in U/L on the Xaxis.

Note: Don't forget title of the graph "Standard Curve" and the x- axis and y- axis with their units

-Absorbance at 546 nm =

-ALT (SGPT) activity (from graph)=U/L

Discussion

• Mention the diagnostic importance of ALT

• Explain the difference in the principle of each ALT assay.

 Compare your result with ALT normal range [in males], and diagnose the patient's state (what disease could the patient have or not).