4. For a two-period binomial model, you aregiven:
(i) Each period is one year.
(ii) The current pricefor a nondi vidend-paying stock is 20.
(iii) $u=1.2840$, where u is one plus the rate of capital gain on the stock per period if the stock pricegoes up.
(iv) $\mathrm{d}=0.8607$, where is one plus the rate of capital loss on the stock per period if the stock pricegoes down.
(v) The continuously compounded risk-fre interest rate is 5\%.

Cal culate the price of an American call option on the stock with a strike price of 22.
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

First, we construct the two-period binomial treefor the stock price.
$\begin{array}{lll}\text { Year } 0 & \text { Year } 1 & \text { Year } 2\end{array}$

The cal cul ations for the stock prices at various nodes are as follows:
$\mathrm{S}_{\mathrm{u}}=20 \times 1.2840=25.680$
$\mathrm{S}_{\mathrm{d}}=20 \times 0.8607=17.214$
$S_{u u}=25.68 \times 1.2840=32.9731$
$S_{\text {ud }}=S_{\text {du }}=17.214 \times 1.2840=22.1028$
$\mathrm{S}_{\mathrm{dd}}=17.214 \times 0.8607=14.8161$
Therisk-neutral probability for the stock price to go up is

$$
p^{*}=\frac{e^{r h}-d}{u-d}=\frac{e^{0.05}-0.8607}{1.2840-0.8607}=0.4502
$$

Thus, the risk-neutral probability for the stock priceto go down is 0.5498 .
If the option is exercised at time 2, the value of the call would be
$\mathrm{C}_{\mathrm{uu}}=(32.9731-22)_{+}=10.9731$
$\mathrm{C}_{\mathrm{ud}}=(22.1028-22)_{+}=0.1028$
$\mathrm{C}_{\mathrm{dd}}=(14.8161-22)_{+}=0$
If the option is European, then $\mathrm{C}_{\mathrm{u}}=\mathrm{e}^{-0.05}\left[0.4502 \mathrm{C}_{u \mathrm{u}}+0.5498 \mathrm{C}_{u d}\right]=4.7530$ and $C_{d}=e^{-0.05}\left[0.4502 C_{u d}+0.5498 C_{d d}\right]=0.0440$.
But since the option is American, we should compare C_{u} and C_{d} with the value of the option if it is exercised at time 1 , which is 3.68 and 0 , respectively. Since $3.68<4.7530$ and $0<0.0440$, it is not optimal to exercise the option at time 1 whether the stock is in the up or down state. Thus the val ue of the option at time 1 is either 4.7530 or 0.0440 .

Finally, the val ue of the call is
$C=e^{-0.05}[0.4502(4.7530)+0.5498(0.0440)]=2.0585$.

Remark: Since thestock pays no dividends, the price of an American call is the same as that of a European call. See pages 294-295 of McDonald (2006). The European option price can be calcul ated using the binomial probability formula. Seformula (11.17) on page 358 and formula (19.1) on page 618 of McDonald (2006). The option price is

$$
\begin{aligned}
& \left.e^{-r(2 n)}\left[\begin{array}{l}
2 \\
2
\end{array}\right) p^{* 2} C_{u u}+\binom{2}{1} p^{*}\left(1-p^{*}\right) C_{u d}+\binom{2}{0}\left(1-p^{*}\right)^{2} C_{d d}\right] \\
& =e^{-0.1}\left[(0.4502)^{2} \times 10.9731+2 \times 0.4502 \times 0.5498 \times 0.1028+0\right] \\
& =2.0507
\end{aligned}
$$

5. Consider a 9-month dollar-denominated American put option on British pounds. Y ou are given that:
(i) The current exchange rate is 1.43 US dollars per pound.
(ii) The strike price of the put is 1.56 US dollars per pound.
(iii) The volatility of the exchange rate is $\sigma=0.3$.
(iv) The US dollar continuously compounded risk-free interest rate is 8\%.
(v) The British pound continuously compounded risk-freinterest rate is 9\%.

Using a three-period binomial model, calculate the price of the put.

Solution to (5)
Each period is of length $h=0.25$. Using thefirst two formulas on page 332 of McDonald (2006):

$$
\begin{gathered}
\mathrm{u}=\exp [-0.01 \times 0.25+0.3 \times \sqrt{0.25}]=\exp (0.1475)=1.158933 \\
\mathrm{~d}=\exp [-0.01 \times 0.25-0.3 \times \sqrt{0.25}]=\exp (-0.1525)=0.858559 .
\end{gathered}
$$

Using formula (10.13), therisk-neutral probability of an up move is

$$
\mathrm{p}^{*}=\frac{\mathrm{e}^{-0.010 .25}-0.858559}{1.158933-0.858559}=0.4626
$$

Therisk-neutral probability of a down moveis thus 0.5374. The 3-period binomial tree for the exchange rate is shown below. The numbers within parentheses are the payoffs of the put option if exercised.

Time0 Timeh Time2h Time3h

The payoffs of the put at maturity (at time 3 h) are
$\mathrm{P}_{\text {uuu }}=0, \mathrm{P}_{\text {udd }}=0, \mathrm{P}_{\text {udd }}=0.3384$ and $\mathrm{P}_{\text {ddd }}=0.6550$.
Now we cal culate values of the put at time 2 h for various states of the exchange rate.
If the put is European, then
$\mathrm{P}_{\mathrm{uu}}=0$,
$P_{\text {ud }}=\mathrm{e}^{-0.02}\left[0.4626 \mathrm{P}_{\text {uud }}+0.5374 \mathrm{P}_{\text {udd }}\right]=0.1783$,
$\mathrm{P}_{\text {dd }}=\mathrm{e}^{-0.02}\left[0.4626 \mathrm{P}_{\text {udd }}+0.5374 \mathrm{P}_{\text {ddd }}\right]=0.4985$.
But since the option is American, we should compare $\mathrm{P}_{\mathrm{uu}}, \mathrm{P}_{\mathrm{ud}}$ and P_{dd} with the values of the option if it is exercised at time $2 h$, which are $0,0.1371$ and 0.5059 , respectively. Since $0.4985<0.5059$, it is optimal to exercise the option at time 2 h if the exchange rate has gone down two times before. Thus the values of the option at time 2 h are $\mathrm{P}_{\mathrm{uu}}=0$, $P_{u d}=0.1783$ and $P_{d d}=0.5059$.

Now we calculate val ues of the put at timeh for various states of the exchange rate
If the put is European, then
$\mathrm{P}_{\mathrm{u}}=\mathrm{e}^{-0.02}\left[0.4626 \mathrm{P}_{\mathrm{u}}+0.5374 \mathrm{P}_{\mathrm{ud}}\right]=0.0939$,
$\mathrm{P}_{\mathrm{d}}=\mathrm{e}^{-0.02}\left[0.4626 \mathrm{P}_{\mathrm{ud}}+0.5374 \mathrm{P}_{\mathrm{dd}}\right]=0.3474$.
But since the option is American, we should compare P_{u} and P_{d} with the values of the option if it is exercised at timeh, which are 0 and 0.3323 , respectively. Since $0.3474>$ 0.3323, it is not optimal to exercise the option at timeh. Thus the values of the option at timeh are $\mathrm{P}_{\mathrm{u}}=0.0939$ and $\mathrm{P}_{\mathrm{d}}=0.3474$.

Finally, discount and average P_{u} and P_{d} to get the time 0 price,

$$
\mathrm{P}=\mathrm{e}^{-0.02}\left[0.4626 \mathrm{P}_{\mathrm{u}}+0.5374 \mathrm{P}_{\mathrm{d}}\right]=0.2256 .
$$

Since it is greater than 0.13 , it is not optimal to exercise the option at time 0 and hence the price of the put is 0.2256 .

Remarks:

(i) Because $\frac{e^{(r-\delta) h}-e^{(r-\delta) h-\sigma \sqrt{h}}}{e^{(r-\delta) h+\sigma \sqrt{h}}-e^{(r-\delta) h-\sigma \sqrt{h}}}=\frac{1-e^{-\sigma \sqrt{h}}}{e^{\sigma \sqrt{h}}-e^{-\sigma \sqrt{h}}}=\frac{1}{1+e^{\sigma \sqrt{h}}}$, we can also cal cul ate the risk-netral probability p^{*} as follows:

$$
p^{*}=\frac{1}{1+e^{\sigma \sqrt{h}}}=\frac{1}{1+e^{0.3 \sqrt{0.25}}}=\frac{1}{1+e^{0.15}}=0.46257 .
$$

(ii)

$$
1-p^{*}=1-\frac{1}{1+e^{\sigma \sqrt{h}}}=\frac{e^{\sigma \sqrt{h}}}{1+e^{\sigma \sqrt{h}}}=\frac{1}{1+e^{-\sigma \sqrt{h}}} .
$$

(iii) Because $\sigma>0$, we have the inequal ities

$$
\mathrm{p}^{*}<1 / 2<1-\mathrm{p}^{*} .
$$

