Kingdom of Saudi Arabia
Ministry of Education
King Saud University
College of Science
Department of mathematics

المملكة العربية السعودية
وزارة التعليم
جامعة الملك سعود
كلية العلوم
قسم الرياضيات

MIDTERM 1 EXAM

SEMESTER	SECOND TERM	YEAR	$2017 / 2016$
	COURSE	ACTU 465	
DATE	$29 / 03 / 2017$	DURATION	1 H 30 MNS

رقم الشبّ:	
توقيع الطالب():	الرقم الجامعي للطالب():

INSTRUCTIONS

1) Please check that your exam contains $\mathbf{0 6}$ pages total (including the first page!!), 03 questions and a Bonus question.
2) Answer all questions.
3) No books, No notes and no phones are allowed.
4) A standard no programmable calculator is allowed.
5) Table for most used distributions is included.
6) Z-table is included.

Question	1	2	3
Total score	5	10	10
Score			

Exercise 1. ($2+2+1=5$ marks) Suppose $\Lambda \sim \operatorname{Exponential}(\beta)$ and $X_{\mid \Lambda=\lambda} \sim \operatorname{Poisson}(\lambda)$.
a) Compute the mass function of X.
b) Deduce that X has a geometric distribution.
c) Compute the mean of X.

Bonus question. (2 marks) Suppose $\mathrm{N} \sim \operatorname{Poisson}(\beta)$ and $Y_{\mid \mathrm{N}=n} \sim \operatorname{Binomial}(n, 0.2)$. Compute the mgf of Y and deduce that Y has a Poisson distribution.

Exercise 2. ($2+2+2+2+2=10$ marks $)$
You are given:
(i) The annual size X of claims for a policyholder follows an exponential distribution with mean $1 / \lambda$.
(ii) The prior distribution of Λ is $\operatorname{Gamma}(5,2)$.

An insured is selected at random and observed to have a claim size of 5 during Year 1 and a claim size of 3 during Year 2.
a) Find the model distribution.
b) Find the joint distribution of $\left(X_{1}, X_{2}\right)$ and Λ.
c) Find the marginal distribution of $\left(X_{1}, X_{2}\right)$.
d) Find the posterior distribution of Λ.
e) Find the posterior mean of the claim size in Year 3.

Exercise 3. (2+2+2+2+2=10 marks)

The model for an annual total claim is given as follows:
(i) The number of claims N follows a negative binomial distribution with parameters $r=2$ and $p=0.4$.
(ii) Claim severity Y has the following distribution:

Claim Size Y	Probability $P(Y=y)$
1	0.3
10	0.5
100	0.2

(iii) The number of claims is independent of the severity of claims.

We suppose that aggregate (total) losses are within 10% of expected aggregate (total) losses with 95\% probability.
a) Compute the mean and variance of Y.
b) Compute the mean and variance of N.
c) Compute the mean and variance of the annual total claim $X=Y_{1}+\cdots+Y_{N}$.
d) Determine the standard of full credibility, measured in terms of the number of observations.
e) Compute the credibility factor based on $n=560$ observations.

Table A The most frequently used discrete and continuous distributions

Distribution	Density \& support	Moments \& cumulants	Mgf
$\begin{aligned} & \operatorname{Binomial}(n, p) \\ & (0<p<1, n \in \mathbb{N}) \end{aligned}$	$\begin{gathered} \binom{n}{x} p^{x}(1-p)^{n-x} \\ x=0,1, \ldots, n \end{gathered}$	$\begin{aligned} & \mathrm{E}=n p, \operatorname{Var}=n p(1-p), \\ & \gamma=\frac{n p(1-p)(1-2 p)}{\sigma^{3}} \end{aligned}$	$\left(1-p+p \mathrm{e}^{t}\right)^{n}$
Bernoulli (p)	$\equiv \operatorname{Binomial}(1, p)$		
$\begin{aligned} & \text { Poisson }(\lambda) \\ & (\lambda>0) \end{aligned}$	$\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}, x=0,1, \ldots$	$\begin{aligned} & \mathrm{E}=\mathrm{Var}=\lambda \\ & \gamma=1 / \sqrt{\lambda} \\ & \kappa_{j}=\lambda, j=1,2, \ldots \end{aligned}$	$\exp \left[\lambda\left(e^{t}-1\right)\right]$
$\begin{aligned} & \text { Negative } \\ & \quad \text { binomial }(r, p) \\ & (r>0,0<p<1) \end{aligned}$	$\begin{gathered} \binom{r+x-1}{x} p^{r}(1-p)^{x} \\ x=0,1,2, \ldots \end{gathered}$	$\begin{aligned} & \mathrm{E}=r(1-p) / p \\ & \mathrm{Var}=\mathrm{E} / p \\ & \gamma=\frac{(2-p)}{p \sigma} \end{aligned}$	$\left(\frac{p}{1-(1-p) \mathrm{e}^{t}}\right)^{r}$
Geometric (p)	\equiv Negative binomial $(1, p)$		
$\begin{aligned} & \text { Uniform }(a, b) \\ & (a<b) \end{aligned}$	$\frac{1}{b-a} ; a<x<b$	$\begin{aligned} & \mathrm{E}=(a+b) / 2, \\ & \mathrm{Var}=(b-a)^{2} / 12, \\ & \gamma=0 \end{aligned}$	$\frac{\mathrm{e}^{b t}-\mathrm{e}^{a t}}{(b-a) t}$
$\begin{aligned} & \mathrm{N}\left(\mu, \sigma^{2}\right) \\ & (\sigma>0) \end{aligned}$	$\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-(x-\mu)^{2}}{2 \sigma^{2}}$	$\begin{aligned} & \mathrm{E}=\mu, \mathrm{Var}=\sigma^{2}, \gamma=0 \\ & \left(\kappa_{j}=0, j \geq 3\right) \end{aligned}$	$\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)$
$\begin{aligned} & \operatorname{Gamma}(\alpha, \beta) \\ & (\alpha, \beta>0) \end{aligned}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\beta x}, x>0$	$\begin{aligned} & \mathrm{E}=\alpha / \beta, \operatorname{Var}=\alpha / \beta^{2}, \\ & \gamma=2 / \sqrt{\alpha} \end{aligned}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}(t<\beta)$
Exponential(β)	$\equiv \operatorname{gamma}(1, \beta)$		
$\chi^{2}(k)(k \in \mathbb{N})$	$\equiv \operatorname{gamma}(k / 2,1 / 2)$		
Inverse $\begin{aligned} & \operatorname{Gaussian}(\alpha, \beta) \\ & (\alpha>0, \beta>0) \end{aligned}$	$\begin{gathered} \frac{\alpha x^{-3 / 2}}{\sqrt{2 \pi \beta}} \exp \left(\frac{-(\alpha-\beta x)^{2}}{2 \beta x}\right) \\ F(x)=\Phi\left(\frac{-\alpha}{\sqrt{\beta x}}+\sqrt{\beta x}\right) \end{gathered}$	$\begin{aligned} & \mathrm{E}=\alpha / \beta, \mathrm{Var}=\alpha / \beta^{2} \\ & \gamma=3 / \sqrt{\alpha} \\ & +\mathrm{e}^{2 \alpha} \Phi\left(\frac{-\alpha}{\sqrt{\beta x}}-\sqrt{\beta x}\right), \end{aligned}$	$\begin{aligned} & \mathrm{e}^{\alpha(1-\sqrt{1-2 t / \beta})} \\ & (t \leq \beta / 2) \\ & \quad x>0 \end{aligned}$

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

