Q1: (a) Let V be any set which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V that make V a vector space. (5 marks)
(b) Let $\mathrm{V}=\mathrm{M}_{\mathrm{nn}}$ and W is the set of all symmetric matrices of degree n . Prove that W is a subspace of V . (3 marks)

Q2: (a) Use the Wronskian to show that $1+x, 1-x, x^{2}$ are linearly independent. (3 marks)
(b) show that the vectors $(1,2,1),(2,1,2),(1,1,0)$ form a basis for \mathbb{R}^{3}. (3 marks)

Q3: (a) Let $B=\{(1,2),(2,5)\}$ and $B^{\prime}=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^{2}. Find the transition matrix from B^{\prime} to B. (3 marks).
(b) Find a basis for the column space of the matrix:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 6 & -1 \\
2 & 4 & 4 & 6 \\
3 & 6 & 10 & 5
\end{array}\right]
$$

and deduce $\operatorname{dim}\left(n u l l\left(A^{\top}\right)\right)$ without solving any linear system. (3 marks)

Q4: Show that $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 1 & 4 & 5 \\ 0 & 0 & -1\end{array}\right]$ is diagonalizable and find a matrix P that diagonalizes A. (5 marks)

