المملكة العربية السعودية وزارة التعليم جامعة الملك سعود كلية العلوم قسم الرياضيات

MIDTERM 2 EXAM

SEMESTER	SECOND TERM	YEAR	2017/2016
	COURSE	ACTU 465	
DATE	26/04/2017	DURATION	1H 30 MNS

رقم الشعبة:	إسم الطالب(ة):
توقيع الطالب(ة):	الرقم الجامعي للطالب(ة):

INSTRUCTIONS

- 1) Please check that your exam contains <u>07 pages</u> total (including the first page!!), **04** questions and a Bonus question.
- 2) **Answer all questions.**
- 3) No books, No notes and no phones are allowed.
- 4) A standard no programmable calculator is allowed.
- 5) Table for most used distributions is included.

Question	1	2	3	4	BQ
Total score	6	6	7	6	3
Score					

Exercise 1. (2+2+2=6 marks) Let $X_1, ..., X_n$ be past claim amounts. Suppose that $X_i | \Theta$ are independent and identically uniformly distributed on the interval $(0, \Theta)$ and Θ is Gamma distributed with parameters α and β .

Determine

- a) the hypothetical mean, its mean and variance.
- b) the process variance and its mean.
- c) the Buhlmann premium.

Exercise 2. (2+2+2=6 marks) Suppose the conditional distribution of the number of claims and the prior distribution are given as follows:

$X \Theta$	Probability	Θ	Probability
0	0/10	1	0.3
1	Θ/5	2	0.7
2	$1 - 3\Theta / 10$		

Suppose further that a randomly chosen insured has one claim in year 1 and 2 claims in year 2. Determine

- a) the hypothetical mean, its mean and variance.
- b) the process variance and its mean.
- c) the Buhlmann estimate for the number of claims in year 3.

Exercise 3. (2+2+3=7 marks)

You are given:

(i) The number of claims incurred in a year by any insured has a Binomial distribution with parameters m and q.

(ii) The claim frequencies of different insureds are independent.

(iii) The prior distribution M is Geometric with parameter p.

(iv)

Year	Annual Number of insureds	Annual Number of claims
1	120	10
2	100	8
3	180	14
4	200	?

1) Determine

a) the hypothetical mean, its mean and variance.

b) the process variance and its mean.

2) Suppose p = q = 0.2, determine the Buhlmann-Straub credibility estimate of the number of claims in Year 4.

Exercise 4. (2+2+2=6 marks)

You are given total claims for two policyholders:

Policyholder	Year 1	Year 2	Year 3	Year 4
X	730	800	650	700
Y	655	650	625	750

Using the nonparametric empirical Bayes method, determine the estimated value ofa) the mean and variance of the hypothetical mean.b) the mean of the process variance.

- c) the Buhlmann credibility premium for Policyholder Y.

Bonus Question. (3 marks)

You are given $X_1, ..., X_n$ such that: (i) The model distribution of $X_i | M$ is Poisson with parameter M. (ii) The prior distribution of M is exponential with parameter δ . Show that the model satisfies exact credibility.

Distribution	Density & support	Moments & cumulants	Mgf
Binomial (n,p) $(0$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, \dots, n$	$\begin{split} \mathbf{E} &= np, \text{Var} = np(1-p), \\ \gamma &= \frac{np(1-p)(1-2p)}{\sigma^3} \end{split}$	$(1-p+pe^t)^n$
Bernoulli(p)	\equiv Binomial(1, <i>p</i>)		
Poisson(λ) ($\lambda > 0$)	$e^{-\lambda} \frac{\lambda^x}{x!}, x = 0, 1, \dots$	$E = Var = \lambda,$ $\gamma = 1/\sqrt{\lambda},$ $\kappa_j = \lambda, \ j = 1, 2, \dots$	$\exp[\lambda(e^t-1)]$
Negative binomial(r, p) ($r > 0, 0)$	$\binom{r+x-1}{x}p^r(1-p)^x$ $x = 0, 1, 2, \dots$	E = r(1 - p)/p Var = E/p, $\gamma = \frac{(2-p)}{p\sigma}$	$\left(\frac{p}{1-(1-p)\mathrm{e}^t}\right)^r$
Geometric(p)	\equiv Negative binomial(1, <i>p</i>)		
Uniform (a,b) (a < b)	$\frac{1}{b-a}; a < x < b$	E = (a+b)/2, Var = $(b-a)^2/12,$ $\gamma = 0$	$\frac{\mathrm{e}^{bt} - \mathrm{e}^{at}}{(b-a)t}$
$\begin{array}{l} \mathrm{N}(\mu,\sigma^2) \\ (\sigma>0) \end{array}$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\frac{-(x-\mu)^2}{2\sigma^2}$	$E = \mu, \text{ Var} = \sigma^2, \gamma = 0$ $(\kappa_j = 0, j \ge 3)$	$\exp(\mu t + \frac{1}{2}\sigma^2 t^2)$
$ \begin{array}{l} \text{Gamma}(\alpha,\beta) \\ (\alpha,\beta>0) \end{array} $	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x}, x > 0$	$\mathbf{E} = \alpha/\beta$, $\mathbf{Var} = \alpha/\beta^2$, $\gamma = 2/\sqrt{\alpha}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}(t<\beta)$
Exponential(β)	$\equiv \text{gamma}(1,\beta)$		
$\chi^2(k)\;(k\in\mathbb{N})$	\equiv gamma($k/2, 1/2$)		
Inverse Gaussian(α, β) ($\alpha > 0, \beta > 0$)	$\frac{\alpha x^{-3/2}}{\sqrt{2\pi\beta}} \exp\left(\frac{-(\alpha-\beta x)^2}{2\beta x}\right)$ $F(x) = \Phi\left(\frac{-\alpha}{\sqrt{\beta x}} + \sqrt{\beta x}\right)$	$E = \alpha/\beta, \text{ Var} = \alpha/\beta^2,$ $\gamma = 3/\sqrt{\alpha}$ $+ e^{2\alpha} \Phi\left(\frac{-\alpha}{\sqrt{\beta x}} - \sqrt{\beta x}\right)$	$e^{\alpha(1-\sqrt{1-2t/\beta})}$ $(t \le \beta/2)$ $, x > 0$

Table A The most frequently used discrete and continuou
