MID TERM II EXAMINATION
 SEMESTER I, 1433-1434
 Department of Mathematics
 King Saud University
 MATH: 203 Time: 90 Minutes Full Marks: 25

Question \# 1. [Marks: 4]

Evaluate the integral $\int_{0}^{2} \int_{y}^{2} e^{x^{2}} d x d y$.
Question \# 2. [Marks: 4]
Evaluate the integral using polar coordinates.

$$
\iint_{R} \sqrt{4-x^{2}-y^{2}} d A
$$

where R is the region bounded by the circle $x^{2}+(y-1)^{2}=1$.

Question \# 3. [Marks: 4]

Find the surface area of the portion of the surface $z=x y$ that is above the region in the first quadrant bounded by the lines $y=x, y=0$, and the circle $x^{2}+y^{2}=9$.

Question \# 4. [Marks: 4]
The area mass density of the lamina in the shape of the region bounded by the graphs of $y^{2}=x$ and $x+y=2$ is given by $\delta(x, y)=x$. Find the mass of the lamina.

Question \# 5. [Marks: 4]
Find the center of the mass of the homogeneous solid that lies inside the cone $z=\sqrt{x^{2}+y^{2}}$ and the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$.

Question \# 6. [Marks: 5]
Use cylindrical coordinates to evaluate the integral

$$
\int_{0}^{2} \int_{-\sqrt{2 x-x^{2}}}^{\sqrt{2 x-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

