Question: 1. Let $x+2 y+3 z=5$

$$
\begin{aligned}
& x+3 y+4 z=2 \\
& x+4 y+3 z=-1
\end{aligned}
$$

(a) Write the above system of linear equations in the form $A X=B$,
(b) Find A^{-1} by method of cofactors,
(c) Use A^{-1} to solve the above system of equation.

Question: 2 . Solve the system by Gaussian Elimination

$$
\begin{array}{r}
x+y+z=2 \\
2 x+3 y+z=3 \\
x-y-2 z=-6 \tag{7}
\end{array}
$$

Question: 3.Use properties to find determinant of matrix

$$
A=\left[\begin{array}{cccc}
-3 & 1 & 1 & 1 \tag{5}\\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right]
$$

Question: 4 . . Find the value of λ if the system of equations has non-trivial solutions

$$
\begin{align*}
\lambda x+y+2 z & =0 \\
x+\lambda y+3 z & =0 \\
x+3 y+\lambda z & =0 \tag{5}
\end{align*}
$$

Question: 5. Use properties to show that $\left|\begin{array}{lll}a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3} \\ b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\ c_{1}+a_{1} & c_{2}+a_{2} & c_{3}+a_{3}\end{array}\right|=2\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

Question: 6. Given the points $\mathbf{P}(1,-1,0), Q(2,1,1)$ and $R(-1,1,2)$ be points ,
(a) Find the angle between $P Q$ and $P R$,
(b) Determine the area of triangle $P Q R$, and
(c) Find a unit vector perpendicular to the plane determined by \mathbf{P}, \mathbf{Q} and \mathbf{R}.

Question:7. Use Scalar product to verify that $a=<2,3,1>, b=<1,-1,0>$ and $c=<7,3,2>$ lie in the same plane.

Question: 8 .Use Cross product to find the distance of the point $\mathbf{P (2 , 3 , - 1)}$ from the line passing through points $R(3,4,0)$ and $S(5,2,1)$

Question: 1. Let $x+2 y+3 z=5$

$$
\begin{aligned}
& x+3 y+4 z=2 \\
& x+4 y+3 z=-1
\end{aligned}
$$

(a) Write the above system of linear equations in the form $A X=B$,
(b) Find A^{-1} by method of cofactors,
(c) Use A^{-1} to solve the above system of equation.

Question: 2 . Solve the system by Gaussian Elimination

$$
\begin{array}{r}
x+y+z=2 \\
2 x+3 y+z=3 \\
x-y-2 z=-6 \tag{7}
\end{array}
$$

Question: 3.Use properties to find determinant of matrix

$$
A=\left[\begin{array}{cccc}
-3 & 1 & 1 & 1 \tag{5}\\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right]
$$

Question: 4 . . Find the value of λ if the system of equations has non-trivial solutions

$$
\begin{align*}
\lambda x+y+2 z & =0 \\
x+\lambda y+3 z & =0 \\
x+3 y+\lambda z & =0 \tag{5}
\end{align*}
$$

Question: 5. Use properties to show that $\left|\begin{array}{lll}a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3} \\ b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\ c_{1}+a_{1} & c_{2}+a_{2} & c_{3}+a_{3}\end{array}\right|=2\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

Question: 6. Given the points $\mathbf{P}(1,-1,0), Q(2,1,1)$ and $R(-1,1,2)$ be points ,
(a) Find the angle between $P Q$ and $P R$,
(b) Determine the area of triangle $P Q R$, and
(c) Find a unit vector perpendicular to the plane determined by P, Q and R.

Question:7. Use Scalar product to verify that $a=<2,3,1>, b=<1,-1,0>$ and $c=<7,3,2>$ lie in the same plane.

Question: 8 .Use Cross product to find the distance of the point $\mathbf{P (2 , 3 , - 1)}$ from the line passing through points $R(3,4,0)$ and $S(5,2,1)$

