Biochemical Calculations

312 BCH
Prepared by: Nojood AlTwaijry Office: Building 5, $3^{\text {rd }}$ floor, 197

Reference: Biochemical calculations by Irwin H. Segel.

Midterm dates

- ${ }^{\text {st }}$ Midterm:
- $5^{\text {th }}$ week, Monday $4^{\text {th }}$ of February (28 Jumad'a I).
- Time 12-1 pm.
- $2^{\text {nd }}$ Midterm:
- $10^{\text {th }}$ week, Monday $11^{\text {th }}$ of March (4 Rajab)
- Time 12-1 pm.

Marks distribution

- Midterm 1: 15 marks (15\%)
- Midterm 2: 20 marks (20\%)
- Lab: 25 marks (25\%)
- Final exam: 40 marks (40%)

Objective of this lecture

1) To be familiar with the names and type of glassware used in the labs.
2) To know how to calculate the molarity and normality of solutions

Glassware

Bottles

Wide neck, amber, bottles; can be used for a wide range of light sensitive liquid or solid storage.

Reagent bottles

Narrow neck bottles; can be used for a wide range of liquid storage, media preparation and sampling applications.

Glassware continued

Media-lab bottles

Wash bottles

Glassware continued

Beakers

Conical shape beakers; ideally used for titrations and mixing application, these conical shape beakers are a cross between a standard beaker and conical flask.

Griffin beaker; is great for general laboratory use.

Glassware continued

Flasks

Volumetric flasks; are precision measuring instruments.

Distillation flasks

Cell culture flasks

Erlenmeyer Conical flasks

Glassware continued

Volumetric ware

Burette

Burette clamp

Cylinder

Mixing cylinder

Glassware continued

Test tubes

Test tubes

Test tubes with ground socket joint.

Culture Tubes
Centrifuge Tubes

Glassware continued

Pipettes

One mark pipette

Type 1

Type 2

Pasteur Pipettes

Two mark pipette with safety bulb at top.

Graduated pipettes

Glassware continued

Funnels

Filter funnels

Dropping \& Separating Funnels

Buchner Funnels

Lab equipment

Petri dishes

Balance

Evaporating dishes Ring Stand

Test Tube Clamp

Vial Racks

pH meter

Lab equipment continued

Micropipettes

Multichannel micropipettes

Tips

Eppendorf tubes

Solution Composition

- A solute is the substance being dissolved.
- A solvent is the liquid in which the solute is dissolved.
- A solute is dissolved in a solvent.
- An aqueous solution has water as solvent.

Aqueous Solution

- The majority of reactions occur in solutions.
- There are several ways to express the concentration of a substance in a solution based on:
- The volume
- The weight
- Degree of saturation

Concentration based on volume

- Here the concentrations are based on the amount of dissolved solute per unit volume
- The calculations depending on volume include:
- Molarity (M)
- Normality (N)
- Activity (a)
- Weight/Volume percent (w/v \%)
- Volume/volume percent (v/v\%)
- Milligram percent (mg \%)
- Osmolarity (osm)

1- Molarity

- Is the number of moles of solute per liter of solution No. of moles

$$
M=\text { Volume of solution in } L
$$

- No. of moles $=\mathrm{Wt}_{\mathrm{g}} / \mathrm{MWT}$ (molecular weight)
- 1 mole contains Avogadro's number of molecules per liter $\left(6.023 \times 10^{23}\right)$.
- Molar concentrations are usually given in square brackets
- Example: $[\mathrm{H}+]=$ molarity of hydrogen ion
$[\mathrm{NaOH}]=$ molarity of Sodium Hydroxide

Molarity cont'ed

- Examples:
- A solution of NaCL had 0.8 moles of solute in 2 liters of solution. What is its molarity?

$$
M=\frac{\text { no. of moles }}{\text { volume of solution in } L}
$$

$$
M=\frac{0.8}{2}
$$

$$
\mathrm{M}=0.4 \text { molar }
$$

Molarity cont'ed

- Examples: How many grams of solid NaOH are required to prepared 500 ml of 0.04 M solution?

$$
\begin{aligned}
& \mathrm{M}=\frac{\text { no. of moles }}{\text { volume of solution in } \mathrm{L}} \\
& 500 \mathrm{ml}=500 \div 1000=0.5 \mathrm{~L} \\
& \text { no. of moles }=0.04 \times 0.5 \\
& \text { no. of moles }=0.02 \text { mole } \\
& \text { no. of moles }=\frac{\text { weight in gram }}{\text { molecular weight }(M W T)}
\end{aligned}
$$

Molarity cont'ed

MWT of $\mathrm{NaOH}=23=16+1=40$
Wt in grams $=$ no. of moles \times MWT
wt in grams $=0.02 \times 40$
wt in grams $=0.8$ grams

2- Normality

- Is the number of equivalents of solute per liter of solution

$$
\mathrm{N}=\frac{\text { no. of equivalents }}{\text { volume of solution in } \mathrm{L}}
$$

$$
\text { no. of equivalents }=\frac{\text { weight in gram }}{\text { Equivalent weight (EW) }}
$$

$$
\text { equivalent weight }=\quad \text { MWT }
$$

n
$\mathrm{n}=$ is the number of replaceable hydrogen (H in acids) or hydroxyl ions (OH -in bases) per molecule

Normality cont'ed

$\mathrm{n}=\mathrm{is}$ the number of electrons gained or lost per molecule (in oxidizing or reducing agents)

$$
N=\frac{\text { no. of equivalents }}{\text { volume of solution in } L}
$$

$\mathrm{N}=\frac{\text { weight in gram }}{\text { Equivalent weight }} /$ volume of solution in L
$N=\frac{\text { weight in gram }}{M W T / n} /$ volume of solution in L

Normality cont'ed

$$
\begin{aligned}
& \mathrm{N}=\frac{\text { weight in gram } \times \mathrm{n}}{\mathrm{MWT}} / \text { volume of solution in } \mathrm{L} \\
& \mathrm{M}=\frac{\text { no. of moles }}{\text { volume of solution in } \mathrm{L}} \\
& \mathrm{M}=\frac{\text { weight in gram }}{M W T} / \text { volume of solution in } \mathrm{L} \\
& \\
& \longrightarrow \mathrm{~N}=\mathrm{n} \times \mathrm{M}
\end{aligned}
$$

- For example: A 0.01 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.02 N

Normality cont'ed

- Example: What is the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that contains 24.5 g of solute in a total volume of 100 ml ?
- $N=n \times M$
- $\mathrm{n}=2$
- $M=$ No. of moles $/ V_{(L)}$
- $100 \mathrm{ml}=100 \div 1000=0.1 \mathrm{~L}$
- No. of moles $=\mathrm{Wt}_{\mathrm{g}} / \mathrm{MWT}$

MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=2+32+(16 \times 4)=98 \mathrm{~g}$

Normality cont'ed

- No. of moles $=24.5 / 98$
- No. of moles $=0.25$ mole
- $M=$ No. of moles $/ V_{(L)}$
- $\mathrm{M}=0.25 / 0.1=2.5$ molar
- $N=n \times M$
- $\mathrm{N}=2 \times 2.5=5$ normal

Normality cont'ed

Another way to solve it:

- Normality (N) = No. of equivalents $/ \mathrm{V}_{(\mathrm{L})}$
- No. of equivalents $=\mathrm{Wt}_{\mathrm{g}}$ of solute $/$ equivalents weight (EW)
- EW= MWT of solute / n
- MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=2+32+(16 \times 4)=98 \mathrm{~g}$
- $\mathrm{EW}=98 / 2=49$
- No. of equivalents $=\mathrm{Wt}_{\mathrm{g}}$ of solute / equivalents weight (EW)
- $\quad=24.5 \mathrm{~g} / 49=0.5 \mathrm{eq}$
- Normality $(N)=$ No. of equivalents $/ \mathrm{V}_{(\mathrm{L})}$

$$
=0.5 / 0.1=5 \text { Normal }
$$

