Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies

Nasser Abdulatif Al-Shabib a,⁎, Javed Masood Khan a,⁎, Jamaluddin Malik b, Mohammad A. Alsenaidy c, Md Tabish Rehman d, Mohamed F. AlAjamı d, Abdulrahman M. Alsenaidy b, Fahad Mabood Husain a, Rizwan Hasan Khan e

a Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
b Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
c Department of Pharmaceutics, College of Pharmacy, King Saud University, Saudi Arabia
d Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
e Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India

A R T I C L E I N F O
Article history:
Received 3 March 2018
Received in revised form 4 June 2018
Accepted 31 July 2018
Available online 03 August 2018

Keywords:
Rutin
Flavonoid
Protein-ligand interaction
beta lactoglobulin
CD
Molecular docking

A B S T R A C T
The interaction of natural polyphenolic compounds (rutin) with β-lactoglobulin (BLG) was carried out by using several optical spectroscopic (UV-visible spectroscopy, fluorescence quenching measurements, synchronous fluorescence, 3D fluorescence spectroscopy and far-UV CD measurements), molecular docking and molecular dynamics (MD) simulation methods. The fluorescence quenching results confirmed that fluorescence intensity of BLG is quenched by rutin and the quenching constant is increased with increase in temperature. The quenching mechanism between rutin-BLG was found to be dynamic in nature. The thermodynamic parameter particularly ΔH° and ΔS° obtained through fluorescence measurements clearly indicated that hydrophobic forces are majorly involved in the rutin-BLG interaction. The UV-absorption, synchronous and three-dimensional fluorescence results displayed that the micro-environment of BLG is changed due to rutin interaction. The secondary structure of BLG was found higher in the presence of rutin. Molecular docking results suggested that rutin binds strongly in the internal cavity of BLG at site 1 and superficially at site 2 through both hydrogen bonding and hydrophobic interactions. The binding affinity was found to be higher 5.47 × 10⁶ M⁻¹ for site 1 compared to site 2 (2.86 × 10⁵ M⁻¹). The MD simulation suggested that rutin formed a stable complex with BLG at site 1. This study will explain interacting properties of rutin with carrier BLG proteins and open a new vista for the food industry.

1. Introduction
The last couple of years, natural food additives found much more attention in public and food manufactures. Usually, the public is selecting those foods which do not have any additives, but if foods are not available without additives, then they chose natural additive containing foods instead of synthetic additives [1]. The known natural food additives are having antioxidants, antimicrobial properties. Apart from antioxidants and antimicrobial activity, natural food additives are also used for colorings and sweeteners. The antioxidants are chiefly used in food and its products to overcome off-flavors by oxidation of fats and resume the peroxidation. The polyphenols are very interesting natural food additives found in the vegetables and have several biological applications like antioxidant, reduce cancer, osteoporosis, cataract, brain disease and cardiovascular dysfunctions [2]. The polyphenols are entered into human diet through various roots for example fruits, vegetables, grains, bark roots, stem, flowers, tea and wine [3]. Flavonoids are a large group of the polyphenolic compound, which is found in plant foods and beverages [4]. Flavonols and flavones are the majority of dispersed flavonoids found in plant foods and beverages [5]. Rutin (Fig. 1A) is a flavonol, composed of quercetin and rutinose and found in many plants particularly buckwheat plant [6]. Rutin is very useful phytochemicals because of its important biological activities for example, antioxidant, anti-diabetic, hormone therapy and neuroprotective [7]. Rutin attenuates the ischemic neural apoptosis because it stops p53 expression and lipid peroxidation and simultaneously increase the level of endogenous antioxidant defense enzymes [8]. Rutin is also showing antibacterial and

https://doi.org/10.1016/j.molliq.2018.07.122
0167-7322/© 2018 Elsevier B.V. All rights reserved.
antifungal activity against strains Escherichia coli and Candida gattii [9,10]. Several other biological activity such as Anti-arthritic, Anti-Alzheimer, Anti-diabetic, Anti-cancer and Anti-viral activity was recorded in published reports [11]. Due to lots of beneficial effects of rutin, the utilization of rutin-rich foods and beverages are found much more interesting recently. It has been reported that flavonoids can affect the protein-ligand interactions also [12]. Thus, protein-flavonoids interactions need more attention in clinics. The binding of rutins with proteins are weakly understood. The clinical applications of rutin are limited because of very poor solubility in water and also have low bioavailability due to the hydrophobic ring structure. It is known that BLG is served as a good transporter for the hydrophobic ligand. The interaction of rutin with bovine \(\beta \)-lactoglobulin (BLG) will be important. Bovine BLG belongs to lipocalins family proteins. The general property of lipocalins family proteins, they are functionally different, having weak sequence homology but have similar tertiary structure. Majority of lipocalins proteins are involved in transport of compounds which have a low solubility such as vitamins, steroids and metabolic products etc. [13]. BLG is having the ability to interact and transfer small hydrophobic ligands easily [14]. The BLG is a major bovine whey protein with a number of genetic variants, particularly A and B phenotypes are abundantly found [15]. BLG made up of 162 amino acids with 18.4 kDa of molecular weight and form calyx of almost 8-standard antiparallel \(\beta \)-sheet. BLG is found in dimeric state at physiological pH and become monomer close to pH 2 and 3 due to strong electrostatic repulsion between both subunits [16]. Computationally, it was seen that several polyphenols (quercetin and quercitrin) are known to bind in the internal cavity of BLG. However rutin is bound to the entrance of the cavity because of large structural volume [17].

2.1. Materials

All experiments were performed in 20 mM Tris-HCl buffer, pH 7.4. BLG was dissolved in 20 mM Tris-HCl buffer, pH 7.4 and dialyzed overnight in the similar buffer. After dialysis, BLG was filtered through 0.22 \(\mu \) Millipore syringe filter. A BLG stock solutions concentration was calculated spectrophotometrically by taking absorbance at 280 nm, and extinction coefficient was taken 17,600 M\(^{-1}\) cm\(^{-1}\). The 30 mg of rutin was dissolved in 5 mL of ethanol and covered with a dark sheet to avoid exposure of sunlight.

2.2. Solution preparations

2.3. UV-visible spectroscopic measurements

Absorption measurements were carried out at 25 °C by using Agilent Technologies Carry 60 double beam UV-visible spectrophotometer attached with Peltier temperature controlled program. A fixed concentration of BLG (27.0 \(\mu \)M) was taken in every sample while rutin concentrations was varied from 5.0, 10.0 and 15.0 \(\mu \)M. The appropriate blank of rutin was also scanned and subtracted from BLG-rutin scanned spectra.

2.4. Steady state fluorescence quenching measurements

The Agilent Technologies Carry Eclipse fluorescence spectrophotometer is used and the instrument was equipped with a temperature holder and the temperatures were maintained by a constant temperature water circulator. The fluorescence emission spectra of BLG were recorded in the range of 300–400 nm after excitation at 295 nm. The excitation and emission slit width was fixed 5 and 10 nm respectively. The BLG concentrations were fixed 2.0 \(\mu \)M in all the measurements while rutin concentrations were varied from 0.0–6.6 \(\mu \)M. The fluorescence quenching was recorded at three different temperatures, i.e. 298, 310 and 318 °F and emission maximum were captured at 332 nm. The reduction in fluorescence intensity at 332 nm was estimated according to the Stren-Volmer equation (Eq. (1)).

\[
\frac{F_0}{F} = K_{SV}[Q] + 1 = K_S \tau_0[Q] + 1
\]

(1)

\[
k_q = \frac{K_{SV}}{\tau_0}
\]

(2)

where \(F_0 \) and \(F \) are the fluorescence intensities in the absence and presence of rutin, and \(K_{SV} \) is the Stern-Volmer quenching constant. The \(K_S \) is stands for the bimolecular rate constant in the quenching reaction and \(\tau_0 \) is denoted as the average integral fluorescence lifetime of a fluorophore particularly tryptophan which is \(\approx 10^{-8} \) s [20]. The binding constants and binding sites were analyzed by using Eq. (3).

\[
\log\left(\frac{F_0}{F} - 1\right) = \log K_b + n \log[Q]
\]

(3)

where \(K_b \) is designated as binding constant and \(n \) is denoted as the number of binding sites.

Additionally, the standard enthalpy and entropy change were estimated by utilizing Van't Hoff equation at three different temperatures, given in Eq. (4).

\[
\ln K_b = -\Delta H°/RT + \Delta S°/R
\]

(4)

and

\[
\Delta G° = \Delta H° - T \Delta S°
\]

(5)

where \(K_b \) is denoted as binding constant, \(T \) is absolute temperature, \(\Delta H° \) is the change in enthalpy, \(\Delta G° \) is known as change in free energy, \(\Delta S° \) is entropy change, \(R \) is gas constant (8.314 J/ mol K\(^{-1}\)).

The appropriate blank of rutin was taken in all the steady state fluorescence-quenching measurements.

2.5. Synchronous fluorescence

The synchronous fluorescence spectral measurements of rutin–BLG were taken at different scanning intervals of \(\Delta \lambda \) (\(\Delta \lambda = \Delta \lambda_{ex} – \Delta \lambda_{em} \)). The spectral behavior of tyrosine and tryptophan amino acid residues of BLG was recorded at \(\Delta \lambda = 15 \) nm and \(\Delta \lambda = 60 \) nm, respectively. The spectra were scanned in the range of 200–500 nm. The concentration of BLG was fixed at 2.0 \(\mu \)M whereas the concentration
of rutin was varied from 0.33 μM to 6.5 μM. The excitation and emission slit width were kept constant 10.0 nm.

2.6. 3D fluorescence spectra

The 3D fluorescence spectra of BLG were monitored with and without rutin. The final concentrations of BLG and rutin taken were 2.0 μM respectively. The 3D fluorescence spectra of the sample with and without rutin was scanned by excitation wavelength in the range of 200–500 nm and emission wavelength from 200 to 600 nm at an interval of 5 nm. The scanning parameters were the same as in the fluorescence quenching experiments.

2.7. Far-UV CD measurements

The secondary structural modification of BLG in the absence and presence of rutin was examined by using Applied Photophysics, Chirascan Plus, UK spectropolarimeter attached with a Peltier-type temperature controller. Before sample measurements, the CD instruments were calibrated with D-10-camphorsulfonic acid. Each spectrum was
recorded on the average of three scans. The far-UV CD spectra of BLG were recorded in the range 200–250 nm. The obtained far-UV CD data were further converted into mean residue ellipticity (MRE) which is displayed in Eq. (7).

\[
MRE = \frac{\theta_{\text{obs}}}{10} \times n \times Cp \times l
\]

where \(\theta_{\text{obs}}\) is the CD in millidegrees, \(n\) is the number of amino acid of BLG, and \(l\) is the path length of the cell in centimeters and \(Cp\) is the molar fraction of BLG. The percent secondary structure of BLG at different rutin concentrations was calculated by CDNN software.

2.8. Molecular docking and simulation study

MAESTRO (Maestro, Schrodinger, LLC, New York, NY, 2017) was used for all the steps involved in protein and ligand preparation, receptor grid generation and docking.

2.9. Proteins preparation

The X-ray crystal structure of BLG (PDB Id: 3NPO, resolved 2.20 Å) [21] was downloaded from PDB database (http://www.rcsb.org/pdb). Protein preparation wizard of GLIDE (Glide, Schrödinger, LLC, New York, NY, 2017) was used for the assessment and refinement of protein structure before performing molecular docking. The structure of the protein was prepared by removing water molecules, adding missing hydrogen atoms, assigning bond orders, creating zero bond order to disulfide bonds and deleting any other hetero atoms expect respective ligands. Missing loops and any side chains were added using PRIME module of Schrodinger software (Prime, Schrödinger, LLC, New York, NY, 2017). The protein was then optimized to create H-bond network, and finally energy was minimized using the optimized potentials for liquid simulations 2005 (OPLS2005) force field by setting a default constraint of 0.30 Å root-mean-square deviation (RMSD).

2.10. Ligand preparation

The structure of rutin was drawn using 2D sketcher of Schrodinger suite and optimized for docking by assigning the bond orders and angles using LigPrep module (LigPrep, Schrödinger, LLC, New York, NY, 2017). In LigPrep module, the 2D structure of rutin was converted into the 3D structure, and the energy was minimized using OPLS2005. The ionization state of rutin was generated at pH 7.0 ± 2.0 with the help of Epik module of LigPrep (Epik, Schrödinger, LLC, New York, NY, 2017), keeping other parameters to default values.

2.11. Grid generation and Molecular docking

The active site of BLG was predicted using SiteMap module of Schrodinger software (Sitemap, Schrödinger, LLC, New York, NY, 2017). The grid box was generated by selecting the centroid of the map as the centroid of the grid box. The grid size for docking has been decided by picking the centroid of the respective sites (Site 1 and Site 2) as the center of the grids. The grid size of site 1 was 80 × 80 × 80 Å, while for site 2 the grid size was 56 × 56 × 56 Å. Molecular docking of rutin with BLG was performed with the help of GLIDE v.6.7 from the Schrödinger Suite. Standard precision (SP) and extra precision (XP) docking calculations were carried out and the parameters of scaling

Table 1

<table>
<thead>
<tr>
<th>S. No.</th>
<th>T (K)</th>
<th>(K_{sv}), 10^{-4} (L/mol)</th>
<th>(K_{q}), 10^{-12} (L/mol/s)</th>
<th>(R^2)</th>
<th>(n)</th>
<th>(K_{bp}), 10^{-5} (L/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>298</td>
<td>3.4</td>
<td>3.4</td>
<td>0.9934</td>
<td>1.05</td>
<td>0.69</td>
</tr>
<tr>
<td>2</td>
<td>310</td>
<td>3.9</td>
<td>3.1</td>
<td>0.9929</td>
<td>1.08</td>
<td>1.68</td>
</tr>
<tr>
<td>4</td>
<td>318</td>
<td>4.1</td>
<td>4.1</td>
<td>0.9973</td>
<td>1.10</td>
<td>1.48</td>
</tr>
</tbody>
</table>
factor and partial charge cutoff were set at the default values 0.80 and 0.15, respectively. MM-GBSA (Molecular Mechanics-General Born Surface Area) calculation was performed for the estimation of binding energy. Post docking analysis and visualization was performed on Maestro. The binding affinity of rutin with BLG was calculated as described earlier [22,23] using the following relation:

$$\Delta G = -RT \ln K_d$$ \hspace{1cm} (7)

where, ΔG is the binding energy, T is temperature, R is Boltzman gas constant ($R = 1.987 \text{ cal/mol/K}$) and K_d is the binding affinity.

2.12. Molecular dynamics (MD) simulation

Molecular dynamics simulation was performed using Desmond module of Schrodinger suite (Desmond, Schrödinger, LLC, New York, NY, 2017). The docked complex of rutin at site 1 of BLG was used as an initial conformation for performing MD simulation using OPLS2005 forcefield. Molecular system was placed in an orthorhombic box in such a way that a buffer region of 10 Å was maintained between protein atoms and boundaries of the box. TIP3P water molecules was used to solvate the system and it is neutralized by adding 25Na$^+$ and 17Cl$^-$ ions. The system was minimized and subjected to 30 ns MD simulation with NPT ensemble at 300 K temperature and 1.013 bar pressure while keeping other settings to their default values. In the MD simulation, a time step of 2 fs was used, while the energy and trajectory coordinates were recorded for every 5 ps. Maestro was used for analyzing trajectories and calculating RMSDs from initial structures.

3. Results and discussion

3.1. UV-visible absorption spectroscopy

The UV-absorption spectroscopy is utilized to get the information about secondary (far-UV) and tertiary (near-UV) structural change of proteins [24,25]. The chromophores of proteins particularly (tryptophan, tyrosine and phenylalanine) showed specific electronic absorption bands in between 255 and 300 nm. The aromatic amino acids particularly tryptophan displayed absorption peak exclusively around 280 nm [26]. UV-visible absorption measurements were made at pH 7.4, the maximal absorption wavelength of BLG was seen close to 280 nm. The native BLG protein and BLG complex with increasing concentrations of rutin (5.0, 10.0 and 15.0 μM) are shown in Fig. 1B. From the Fig. 1B, it can be seen that the peak intensity at 280 nm was found increased in the presence of increasing concentrations of rutin but the peak position was remain same at all rutin concentrations. The increase in absorption band at 280 nm in response to rutin is indicated that the BLG conformation is changed due to rutin binding and the changes are centered near tryptophan residues. Similar absorptions changes were also recorded in case of butylated hydroxytoluene-human serum albumin interaction [27].

3.2. The mechanism of fluorescence quenching in BLG-rutin interaction

The intrinsic fluorescence of proteins (BLG) comes from aromatic amino acids viz., tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe). These amino acids are frequently targeted to investigate the ligands or drugs induced conformational changes in proteins [28]. Among above amino acids residues, Trp has highest fluorescence intensity and very sensitive to the changes in the microenvironment. BLG contains two Trp residues (Trp19 and Trp61), the Trp19 residues is present inside the core of BLG while Trp61 is present at the surface [29]. Trp19 is only suitable probe to check the binding between rutin and BLG protein as it is buried inside the cavity while Trp61 is exposed to the solvent. The fluorescent spectra of BLG alone and with different concentrations of rutin at three different temperatures (298, 310 and 318 °F) were recorded and the results are presented in Fig. 2A–C. From the figures, it was seen that BLG had a strong fluorescence emission at 332 nm after being excited at 295 nm and the fluorescence intensity was slightly decrease with respect to increase in temperature. The maximum fluorescence intensity was found at 298 ± 310 ± 318 °F. The fluorescent intensity of BLG was also decreases continuously with increase in rutin concentration, while the wavelength maximum was slightly blue shifted at all the temperatures. The change in fluorescence intensity and wavelength maximums are suggesting that a change was found around fluorophores and the rutin is interacting close to Trp residue of BLG. It is reported that the fluorescence intensity is decreased with increase in temperature because of quenching mechanism [30]. The fluorescence quenching mechanism of protein is divided into three way (i) static (ii) dynamic and (iii) both dynamic and static. In static quenching, a complex is formed between drugs and protein, in dynamic quenching—a collision was taking place between drugs and proteins and in case dynamic and static quenching—both collision and complex are formed together in the presence of drugs [31]. The dynamic and static quenching can be differentiated on the basis of temperature. In dynamic quenching, quenching constant increase with increase in temperature and vice versa in case of static quenching [32]. In order to investigate the quenching mechanism involved in rutin-BLG interaction, rutin was titrated with BLG at three different temperatures and
the obtained results were examined according to the Stern–Volmer equation (as equation no 1). Fig. 3A shows Stern–Volmer plots for rutin-BLG system at three different temperatures viz. 298, 310 and 315 °F and the plot was found to be linear. The Stern–Volmer quenching constant (Ksv) values were determined from the slopes of these plots and the values are given in Table 1. From the Fig. 3A and Table 1, it is evident that the Ksv values at 298, 310 and 315 °F were found to be 3.4, 3.9 and 4.1 \(\times 10^{-10} \) L/mol respectively; the increase in Ksv values with temperature indicated that the dynamic quenching mechanism was found to take place between rutin-BLG. Similar quenching mechanism was also found in case of anastrozole-BSA interaction [33]. The obtained Ksv values help to calculate bimolecular quenching rate constant by using the following Eq. (2). The fluorescence lifetime of the biopolymer was found 10^{-8} s [34]. The values of bimolecular quenching constant are listed in Table 1. The values are increased with increased in temperature, which is also supporting the dynamic mode of quenching between rutin-BLG. The maximum scatter collision-quenching constant Kq of various quencher with other biomolecules are found around 2 \(\times 10^{10} \) L/mol s\(^{-1}\) [35]. Hence, the quenching rate constant of rutin-BLG is found more than quenching constant of biomolecules.

3.3. Binding constant and number of binding sites was determined in rutin-BLG interaction

The binding constant and number of binding sites was calculated by utilizing Eq. (3). The slope of Eq. 3 plot gives information about number of binding sites (n) and intercept provide binding constant (\(K_a \)) of the rutin-BLG interaction. The values of \(K_a \) and n are shown in Fig. 3B and Table 1. From the Table 1 and Fig. 3B, it was noticed that the values of binding constant increase with increase in temperature. The binding constant values are also supporting that the quenching between rutin and BLG was found dynamic type. The number of binding sites was found slightly >1, listed in Table 1.

Table 3

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Condition</th>
<th>Peak</th>
<th>Peak position (λex/λem, nm/nm)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLG alone</td>
<td>A</td>
<td>350/350</td>
<td>840.5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>B</td>
<td>285/334</td>
<td>241.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>C</td>
<td>295/332</td>
<td>528.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>D</td>
<td>250/481</td>
<td>633.8</td>
</tr>
<tr>
<td>5</td>
<td>BLG+2.0 μM rutin</td>
<td>A</td>
<td>350/350</td>
<td>221.53</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>B</td>
<td>285/334</td>
<td>214.89</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>C</td>
<td>295/332</td>
<td>475.60</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>D</td>
<td>250/481</td>
<td>213.05</td>
</tr>
</tbody>
</table>

3.4. Determination of the binding forces between rutin-BLG interactions

The binding forces involved in rutin and BLG interaction can be calculated with the help of thermodynamic parameters. Usually, biomolecules can interact with ligand or drugs through four types of interaction namely (i) hydrophobic interaction, (ii) hydrogen bonding, (iii) Van der Waals' interaction and (iv) electrostatic interaction [36]. Ross and Subramanian have clearly stated that the thermodynamic laws are used to investigate the types of binding forces involved between ligand and biomolecules [37]. The values of enthalpy (\(\Delta H \)) and entropy (\(\Delta S \)) for rutin-BLG interaction were examined from the van’t Hoff plot (Fig. 3C) by fitting the \(K_a \) values obtained at three different temperatures into Eq. (4), while the values of \(\Delta G \) at these temperatures were calculated by using Eq. (5). The data of these thermodynamic parameters are listed in Table 2. The values of \(\Delta G \) was found negative at all the temperature confirming that the rutin-BLG reaction is spontaneous. The values of \(\Delta H \) and \(\Delta S \) are found positive during rutin-BLG interaction; the positive values of enthalpy and entropy are suggesting that the reaction is endothermic. The positive sign of \(\Delta H \) and \(\Delta S \) are found when the ligand interacts with biomolecules through hydrophobic interaction [38]. The rutin-BLG thermodynamic parameters are suggesting that hydrophobic residues of BLG were involved in interaction with rutin.

3.5. Synchronous fluorescence spectroscopy

Synchronous fluorescence spectroscopy is applied to characterize the modification around microenvironment of fluorophores. Two very common fluorophores (tryptophan and tyrosine) were targeted to see
the changes around microenvironment. If the $\Delta \lambda$ values between excitation and emission wavelength are 15 and 60 nm, the synchronous fluorescence gives information around tyrosine and tryptophan residues respectively. The synchronous fluorescence spectra of BLG for $\Delta \lambda$ 60 and 15 nm were plotted in the presence of rutin are shown in Fig. 4. The emission peak of both tryptophan and tyrosine residues is not shifted significantly with rutin concentration while fluorescence intensity is gradually decreased. The drop in fluorescence intensity was found more in case of tryptophan fluorescence. The synchronous fluorescence results signified that the conformational changes are chiefly occurred near tryptophan residues.

3.6. Three dimensional fluorescence spectroscopic analysis

Three-dimensional (3D) fluorescence spectroscopy is one of the powerful techniques, which can give comprehensive detailed fluorescence information of protein into more scientific and credible manner. 3D fluorescence spectroscopy is employed to investigate the rutin-induced conformational change of BLG protein. In Fig. 5, the native BLG showed four peaks, peak A is the Rayleigh scattering peak ($\lambda_{ex} = \lambda_{em}$) and peak D is the second-order scattering peak ($\lambda_{em} = 2\lambda_{ex}$) [39]. The values of all the peaks are shown in Table 3. The main peak of tryptophan and tyrosine residues is peak B while peak C is showed the fluorescence of protein backbone structure of π-π^* (C=O) [40]. The scattering peak A and D was reduced in the presence of 2.0 μM of rutin and the reduction in scattering peak of BLG is suggesting that the rutin-BLG interacted each other. The fluorescence intensity of main peak B and C was also decreased in the presence of 2.0 μM of rutin. The decrements in fluorescence intensity of all four peaks are suggesting that the rutin is causing some conformational change in BLG protein. Similar conformational change around microenvironment was found when ranitidine (RTN) interacted with human serum albumin [41].

3.7. Far-UV Circular dichroism (CD)

Far-UV CD is very useful technique to examine the conformational changes of proteins at secondary structure level [42–44]. To investigate the possible changes in the secondary structure of BLG upon binding with rutin, far-UV CD experiments were done at room temperature. Far-UV CD spectra of free BLG and with different concentrations of rutin were shown in Fig. 6. It can be seen from the figure that the free BLG is showing a single negative peak at 218 nm in the far-UV region, which is characteristic of typical β-sheet structure of protein [45]. With increasing concentrations of rutin the negative ellipticity at 218 nm was increasing, the increase in negative ellipticity in response to rutin is indicating that the BLG is gaining more secondary structure.
The percent secondary structure of free BLG and BLG bound with rutin was calculated by CDNN software and values are listed in Table 4. The far-UV CD results are also suggesting that the secondary structure of BLG was found to be incursed due to rutin binding.

3.8. Molecular docking of rutin with BLG

In silico molecular docking is a well established technique used to explore the mechanism of protein-ligand interaction. Here, we used molecular docking to gain an insight into the binding mechanism of rutin with BLG protein. We used SiteMap to identify the potential binding sites on an unliganded crystal structure of BLG. It leads to the identification of two most probable binding sites, named as Site 1 and Site 2. Site 1 was located deep into the internal cavity of β-barrel, while Site 2 was identified to be located at the outskirts of β-barrel (Fig. 7). Site 1 is a primary binding site harboring a large hydrophobic cavity in which several ligands have been reported to bind [17]. In a previous study, it has been reported that BLG contains three binding sites, however, hydrophobic interactions also played a significant role in the interaction of different polyphenol flavonoids with BLG [17]. In another study, the interaction between curcumin derivatives and human serum albumin was stabilized by hydrogen bonding and hydrophobic interactions [46]. Moreover, the docking score or binding energy of rutin-BLG interaction was estimated to be -9.187 kcal/mol and -6.076 kcal/mol for Site 1 in SP and XP mode, respectively. Similarly, the binding energy of rutin-BLG interaction was valued to be -6.195 kcal/mol and -5.194 for Site 2 in SP and XP mode, respectively. The binding affinity was calculated from the binding energies in XP mode and was calculated to be 5.47×10^5 M$^{-1}$ and 2.86×10^5 M$^{-1}$ for Site 1 and Site 2, respectively. The binding affinity of rutin with BLG has been previously reported to be of the order of 10^4 M$^{-1}$ which is 100-folds lower that the one we observed in this study [17]. The most convincing explanation for this discrepancy is that in our study we found that rutin was bound at the inner hydrophobic cavity of β-barrel and made extensive contacts with the protein, while it was bound only superficially at the opening of the cavity in a previous study [17]. Further, we have estimated the MMPBSA (Molecular Mechanics energies combined with Poisson-
Boltzmann or generalized Born and surface area continuum solvation) energies for accurately determining the strength of ligand–protein interaction. The MM/GBSA energies of rutin–BLG complex at Site 1 and Site 2 were found to be −88.1516 kcal/mol and −68.0112 kcal/mol, respectively.

3.9. MD simulation study

MD simulation was used to mimic the dynamic nature of BLG–rutin interaction under physiological conditions and to confirm the stability of BLG–rutin complex as predicted by Glide docking. The initial conformations of rutin bound at site 1 of BLG was used for MD simulation with respect to the initial original frame. Protein backbone RMSD showed a large deviation for initial 500 ps due to stabilization of the initial protein structure. The system was stabilized after 500 ps and showed steady state dynamics. Protein backbone RMSD in the 2–15 ns was in the range of 1.0 Å to 1.6 Å as compared to that of original structure. The protein–ligand complex was stabilized only after 15 ns of simulation. The protein RMSD in the 15–30 ns was within the range of 1.2–1.4 Å, which was much lower than the prescribed 2.0 Å cutoff. Similarly, RMSD of ligand fitted on protein backbone showed drastic fluctuation during the initial phase of MD simulation. However, the ligand RMSD was stabilized during the latter part of MD simulation in the 15–30 ns range (Fig. 9A). Similar pattern was also seen in the radius of gyration of ligand (Fig. 9B). Before the start of MD simulation, radius of gyration of rutin in solution was estimated to be 5.0 Å. It showed marked decrease in the 0–10 ns MD simulation run and reached 4.4 Å level. However, after 15 ns of MD simulation it remained stabilized at 4.4 Å. Together, these results suggest that the initial fluctuation in the RMSDs of protein as well as ligand might be due to the entry of a big ligand like rutin into the hydrophobic cavity of BLG. Once favorable interactions were formed between rutin and BLG, a stable rutin–BLG complex was demonstrated in the MD simulation.

It is also clear from MD simulation that various inter-molecular interactions such as hydrogen bonding, hydrophobic and ionic interactions as well as water bridges were formed between rutin and BLG (Fig. 9C). Moreover, Fig. 9D showed a schematic diagram of the rutin interacting with BLG. It is clear from Fig. 9C and D that hydrogen bonding and hydrophobic interaction were predominantly responsible for the formation of a stable BLG–rutin complex. We found that Glu62, Asp85 and Asn90 of BLG were involved in forming hydrogen bonds with rutin, while Leu39, Val41 and Ile84 interacted with rutin through hydrophobic interactions.

4. Conclusion

Binding, conformational and molecular docking study of rutin with BLG has been executed in the current study. All the spectroscopic results are suggesting that rutin interacted with BLG through dynamic quenching mechanism. The thermodynamic results designated that the rutin is interacting with BLG through hydrophobic interaction.
Synchronous fluorescence results are showing that the microenvironment of BLG changed and the changes are dominantly found around the tryptophan residues. The far-UV CD results indicated that percent β-sheet structure of BLG is increased due rutin-BLG interaction. The molecular docking results are suggesting that the rutin interacts with BLG at both site 1 and 2 through both hydrogen and hydrophobic interaction. In site 1, six amino acid residues were involved in hydrogen bonding and 13 amino acids responsible for the hydrophobic interaction. Moreover, at site 2, seven amino acids interacted through hydrogen bonding and only three amino acids bound through hydrophobic interaction. The binding affinity was found to be 5.47 × 10^{-1} M^{-1} and 2.86 × 10^{-1} M^{-1} for Site 1 and Site 2 respectively, which is >100 times compared to other molecular docking tools. MD simulation studies also suggested the formation of a stable BLG-rutin complex. The current study provides detail insights into the interaction mechanism of BLG with rutin at physiological pH, which is important for food industries, clinical medicine and life science.

Acknowledgement

The authors extend their appreciation to Deanship of Scientific Research at King Saud University for funding this work through Research Group no. RGP-1439-014.

References