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Abstract Many stochastic methods are available for kinetic simulation of a spatially homogeneous

chemical or biochemical reacting system. These methods become time costing for very complex sys-

tems with huge mechanism as in combustion reactions or even with moderate mechanism with stiff-

ness. In this work, a new algorithm based on Net-Event Kinetic Monte Carlo (NEKMC) method is

implemented to improve the Kinetic Monte Carlo (KMC) method of simulation by reducing the

calculation time. A set of N reversible reactions, in a given mechanism, is considered as 2N elemen-

tary reactions in the KMC method, but in the NEKMC method just N reactions are considered.

For each reversible reaction, the net-probability can be calculated by using the absolute value of

the difference between the rates of the forward and the reverse reaction. By doing this, the number

of events is divided by two and should reduce consequently the calculation time. This new method

(NEKMC) is described and tested on complex systems and speediness of the program is compared

for this method to the old one (KMC).
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1. Introduction

The simulation of chemical reactions plays an important role
in various fields, such as combustion, air pollution, and chem-
ical industry or in chemical education. This simulation can be
achieved either by deterministic or stochastic methods. In

deterministic methods we have to solve the differential equa-
tions system constituted of total rate equations of all species,
that is to say, to find a way to express the variation of concen-

tration versus time for each species. In very rare cases where
the reaction mechanisms are very simple, it is possible to find
exact analytical solutions for the system of differential equa-

tions. In the remaining cases we must accept approximate solu-
tions. These approximate solutions are generally obtained by
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numerical integration methods such as Euler (direct and indi-
rect), Runge-Kutta (second or fourth order), Gear methods
and others (Bamford and Tipper, 1983; Wilcomb and

Bernstein,1977; Noskov and Smooke, 2005; Shiang, 2009).
The stochastic approach is quite different (Gillespie, 2007,
1977; Carstensen and Dean, 2007; Henriksen and Hansen,

2008). We have to calculate for each step (elementary reaction)
the probability defined as the ratio of its rate to the sum of all
steps rates. A random number is generated and compared to

the probabilities in order to choose an elementary reaction.
A chosen elementary reaction is executed by decreasing the
number of molecules of reactants and increasing the number
of molecules of products according to their stoichiometric

coefficients. A new random number is generated and the same
process is repeated until the end of reaction. Here also, there
are several types of algorithms of stochastic simulation; known

as ‘‘Kinetic Monte Carlo’’ (KMC) (Gibson and Bruck, 2000;
Gillespie, 2001; Haseltine and Rawlings, 2002). These algo-
rithms are intended to minimize the computation time, which

tends to dramatically increase with increasing the number of
mechanism steps.

The principal objective of our current work is also the min-

imization of the computation time. An important improve-
ment to our previously described software (Tighezza et al.,
2005) is achieved. Our software was based on KMC algorithm,
and allows simulation of any reaction mechanism with no limit

on the number of steps of this mechanism or the number of
species. This improvement is achieved by implementing ‘‘Net
Event Kinetic Monte Carlo’’ (NEKMC) algorithm, suggested

by Snyder et al. (2005), in order to reduce the computation
time. In this algorithm, any reversible step in the mechanism
is reduced to a single event, unlike the KMC method which

considers it as two separate events. If all steps, in a given mech-
anism, are reversible then it would reduce the number of events
by half and the computation time should decrease significantly.

This method offers a major advantage for reactions with ‘‘stiff-
ness’’ conditions.

2. The model
Let us consider a mechanism constituted by X steps, each step
is a reversible reaction (then with 2X elementary reactions),
with Y species. The molecularity of elementary reactions is

generally less or equal to three, then we can represent the ith
step by:
X3

j¼1
ðvijRij � wijPijÞ ¼ 0 ð1Þ

and its rate by:

Vi ¼ ki
Y3

j¼1
½Rij�vij � k�i

Y3

j¼1
½Pij�wij ð2Þ

where ki represent the rate constant of the forward reaction
and k�i that of the reverse one. [Rij] (or [Pij]) is the concentra-
tion of the jth reactant (or product) in this step and vij (or wij)
the stoichiometric coefficient for the reactant or product,

respectively. This rate could be either positive or negative
and this sign will fix the choice of the forward or reverse reac-
tion when this ith step is chosen.
At some time t, the probability Pi for the ith step to be cho-
sen is:

Pi ¼
jVijPX
i¼1jVij

ð3Þ

The summation of all these probabilities gives one, then we dis-
tribute them on the interval 0–1 by defining a new variable
Prob(i) like this:

Probð1Þ ¼ P1 and ProbðiÞ ¼ Probði� 1Þ þ Pi ð4Þ

and we get evidently Prob(X) = 1.
We generate a random number Rnd in the interval 0–1 and

we compare it to the probabilities previously calculated. If this

random number is situated between the probabilities
Prob(i � 1) and Prob(i),

Probði� 1Þ < Rnd � ProbðiÞ ð5Þ

then the ith step (reversible reaction) is chosen. According to

the rate Vi sign, we execute the forward reaction if Vi > 0;
or the reverse reaction if Vi < 0. The number of molecules
of the reactants is reduced by vij and the number of molecules
of the products is increased by wij in the first case and inversely

for the second case. The reaction time is adjusted according to
the following formula:

Dt ¼ 1
PX

i¼1jVij
ð6Þ

Once these adjustments finished, we recalculate the reaction
rates and probabilities and then start a new loop similar to
the previous one, until a certain time tfin (previously defined

by the user) is reached. A simplified flow chart of this model
is presented in Fig. 1.
3. Validity tests

To verify the validity of this model the reaction (M1) (without
reversible steps) and (M2) (with three reversible steps) were

simulated.

A!k1 B!k2 C ðM1Þ

ðM2Þ

The reaction (M1) has a well-known analytical solution and
the test is to compare the values calculated by our model to the

values obtained from analytical solution. For the cyclic reac-
tion (M2), we compared the simulated values of our model
with the values obtained by using the Euler method.

3.1. Results obtained for the reaction (M1) A!k1 B!k2 C

This reaction was simulated in the following conditions:
k1 = 0.2 s�1, k2 = 0.1 s�1, [A]0 = 1 (arbitrary unit),

[B]0 = [C]0 = 0. Stochastic methods accuracy depends on the
number of molecules in the initial sample (N0). We realized
the simulation with three different values for this parameter;

N0 = 104, 105, and 106 molecules. The accuracy is even better



Figure 1 Flow chart of the NEKMC algorithm.
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when the value of N0 is higher. The simulation results with the
first value (N0 = 104), which is the least precise, are drawn on
the same graph (Fig. 2) with the values calculated from analyt-
ical solutions given by the equations:

½A� ¼ ½A�0 expð�k1tÞ ð7Þ

½B� ¼ ½A�0½expð�k1tÞ � expð�k2tÞ�=ðk2 � k1Þ ð8Þ
Figure 2 Comparison of simulated curves (solid lines) with

curves obtained from analytical solutions (dotted lines) for the

reaction (M1).
½C� ¼ ½A�0 � ð½A� þ ½B�Þ ð9Þ

We can see in Fig. 2 that the two curves are almost identical.
An average percentage of the difference between the simulated
concentration of A (with our model: [A]sim) and the calculated

one (from analytical solutions: [A]calc) is calculated as follows:

D½A�% ¼ 100j½A�calc � ½A�simj
½A�calc

ð10Þ

This relationship is applied to 40 points covering reaction time
up to 95% consumption of reactant A. Differences being posi-

tive and negative, the absolute value is taken in the calculation
of the average. Table 1 summarizes the values of this average
for different values of the N0 parameter and we can see that

it decreases with increasing N0. Fig. 3 shows the distribution
of calculated differences over the time range used. In general,
it is less than 2.5% and decreases with increasing N0. We note

also that it tends to increase over time.

3.2. Results obtained for the cyclic reaction (M2)

This reaction is simulated by using the Euler method in Excel

spreadsheet with an integration step of 10�5 s which is very
Table 1 Variation of the average value of the deviation

according to N0 values.

N0/molecules 104 105 106

D[A]% 0.80 0.54 0.31



Figure 3 Evolution of the deviation (in%) versus time for three values of N0.
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acceptable for such simple mechanism. The rate constants used
are: k1 = 0.1 s�1, k2 = 0.2 s�1, k3 = 0.3 s�1, k4 = 0.4 s�1,

k5 = 0.5 s�1 which are chosen arbitrary, but the last constant
k6 is calculated from the following relation to satisfy the global
equilibrium.

k6 ¼
k2k3k5
k1k4

¼ 0:75 s�1 ð11Þ

The initial concentration used are [A]0 = 1 (arbitrary unit),
[B]0 = [C]0 = 0.

Two values of N0, namely 105 and 106, are used for the sim-
ulation of this reaction in our software, and the results are
compared to those obtained with the Euler method as illus-

trated in Table 2. The results obtained with the NEKMC
method are very similar with those obtained with the Euler
method.

4. Software rapidity tests

As mentioned in our abstract, the main goal of our work is to
reduce the computation time of the simulation. A great

improvement is achieved with the implementation of NEKMC
Table 2 Comparison of the NEKMC results for the reaction (M2)

Time/s A/arbitrary unit B/arbitrary

Euler NEKMC Euler

N0 = 105 N0 = 106

0.20 0.8938 0.8938 0.8937 0.0204

0.40 0.8107 0.8109 0.8108 0.0409

0.60 0.7453 0.7459 0.7453 0.0607

0.80 0.6936 0.6939 0.6936 0.0793

1.00 0.6524 0.6527 0.6525 0.0966

1.20 0.6194 0.6198 0.6194 0.1123

1.40 0.5927 0.5930 0.5927 0.1266

1.60 0.5710 0.5715 0.5711 0.1394

1.80 0.5533 0.5537 0.5535 0.1508

2.00 0.5388 0.5390 0.5390 0.1609
algorithm in our software. For the purpose of illustration of
this improvement, we have simulated the reactions (M1) and

(M2) mentioned above and a third reaction Eq. (M3) with
stiffness situation (fast equilibrium followed by a slow step:
k1 = 10 s�1, k�1= 9 s�1 and k2 = 0.1 s�1):

A¡B!k2 C ðM3Þ
4.1. Rapidity test with reaction (M1) and (M2) (without
stiffness situation)

The reactions (M1) and (M2) are simulated in similar condi-

tions with our old software (with KMC algorithm) and a
new one (with NEKMC algorithm) for a reaction time of
10 s. The computation time obtained for the two algorithms
with the values N0 = 105 and 106 is resumed in Table 3. As ex-

pected for the reaction (M1), without reversible steps, the
computation time is the same for N0 = 105, but KMC is better
than NEKMC for N0 = 106. The NEKMC method is devoted

to reactions with reversible steps and contains many additional
instructions for the reversibility purpose. Evidently, if the reac-
tion does not include reversible steps, these additional instruc-
with those obtained with the Euler method.

unit C/arbitrary unit

NEKMC Euler NEKMC

N0 = 105 N0 = 106 N0 = 105 N0 = 106

0.0203 0.0203 0.0858 0.0859 0.0860

0.0406 0.0409 0.1484 0.1485 0.1484

0.0608 0.0604 0.1940 0.1933 0.1943

0.0795 0.0789 0.2271 0.2266 0.2275

0.0966 0.0962 0.2510 0.2507 0.2513

0.1126 0.1119 0.2683 0.2676 0.2687

0.1269 0.1261 0.2807 0.2801 0.2811

0.1399 0.1391 0.2896 0.2886 0.2898

0.1511 0.1506 0.2959 0.2952 0.2960

0.1613 0.1608 0.3003 0.2998 0.3003



Table 4 Comparison of computation time for the two

algorithms KMC and MEMC in stiff conditions.

Mechanism Algorithm Computation time/s

N0 = 105 N0 = 106

(M3) (k1 = 100 k2) KMC 173 1698

NEKMC 5 31

(M3) (k1 = 1000 k2) KMC 215 2121

NEKMC 4 18

Table 3 Comparison of the ‘‘computation time’’ for the two

algorithms KMC and MEMC.

Mechanism Algorithm Computation time/s

N0 = 105 N0 = 106

(M1) (without reversible steps) KMC 3 24

NEKMC 3 32

(M2) (with 3 reversible steps) KMC 30 292

NEKMC 4 21

Implementation of Net-Event Monte Carlo algorithm in chemical kinetics simulation software of complex 355
tions will slow the software. However the NEKMC method is
around 11 times faster than KMC method for the (M2) reac-

tion (which has only three reversible steps). One can expect
that as the number of the reversible steps increases, the gain
in computation time will be greater.

4.2. Rapidity test with reaction (M3) (with stiffness situation)

Most improvement can be observed for the (M3) reaction,

with only one reversible step but with stiffness situation. As
the differences between the equilibrium constants and the slow
step constant increase, the reaction stiffness increases. The
computation time augment widely as the reaction stiffness aug-

ment. The (M3) reaction is simulated in the stiffness situation
mentioned above (where k1 = 100k2) and in the more stiff sit-
uation where k1 = 1000k2. The computation time obtained for

the two algorithms with the values N0 = 105 and 106 is sum-
marized in Table 4. The NEKMC method is around 34 times
faster than KMC method in the less stiff situation when using

N0 = 105, and 53 times faster when using N0 = 106. The
improvement is greater in the more stiff situation; which is
53 times faster with N0 = 105, and 117 times faster with

N0 = 106.
We can expect that for more complex reactions with more
reversible steps and more stiffness conditions, we will get a
greater factor between the computation time in KMC and

NEKMC which could attain more than thousands.

5. Conclusion

In this work we substituted the Monte Carlo algorithm (KMC)
by the Net-Event Monte Carlo algorithm (NEKMC), which
reduces any reversible step in a given mechanism to a single

event. By doing so, the total number of events is considerably
reduced and the program becomes much faster. The software
speed, when using the NEKMC, easily exceeds a hundred

times the speed of the KMC algorithm for very simple mecha-
nisms and we can expect that for more complex reactions it
will exceed thousands.
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