
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

A hybrid learning algorithm for evolving Flexible Beta Basis Function
Neural Tree Model

Souhir Bouaziz a,n, Habib Dhahri a, Adel M. Alimi a, Ajith Abrahamb,c

a REsearch Group on Intelligent Machines (REGIM), University of Sfax, National School of Engineers (ENIS), BP 1173, Sfax 3038, Tunisia
b Faculty of Electrical Engineering and computer science, Technical University of Ostrava, Czech Republic
c Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, WA, USA

a r t i c l e i n f o

Article history:
Received 27 August 2012
Received in revised form
27 December 2012
Accepted 20 January 2013
Communicated by V. Palade
Available online 15 March 2013

Keywords:
Flexible Beta Basis Function Neural Tree
Model
Extended genetic programming
Opposite-based particle swarm
optimization algorithm
Time-series forecasting
Control system

a b s t r a c t

In this paper, a tree-based encoding method is introduced to represent the Beta basis function neural
network. The proposed model called Flexible Beta Basis Function Neural Tree (FBBFNT) can be created and
optimized based on the predefined Beta operator sets. A hybrid learning algorithm is used to evolving
FBBFNT Model: the structure is developed using the Extended Genetic Programming (EGP) and the Beta
parameters and connected weights are optimized by the Opposite-based Particle Swarm Optimization
algorithm (OPSO). The performance of the proposed method is evaluated for benchmark problems drawn
from control system and time series prediction area and is compared with those of related methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The initiative of using Beta basis functions for designing Artificial
Neural Network was introduced by Alimi in 1997 [16] and in this case
the network is called Beta Basis Function Neural Network (BBFNN).
The BBFNN is a three layer feed-forward neural network that
generally adopts a linear transfer function for the output layer and
a beta basis function as a non-linear transfer function for the hidden
units. The beta basis function has several advantages over the
Gaussian function, such as its ability to generate more rich shapes
(asymmetry, linearity, etc.) [15] and its great flexibility. Therefore
several success researches have been achieved in the use of the
BBFNN for classification (pattern recognition) [27–29], prediction [1–
4], etc. The BBFNN has also the opportunities for an application to
constraint optimization problems [5].

A BBF neural network's performance depends mainly on two
issues which are the network structure and the Beta parameter's
adjustment. For a given problem, a BBFNN structure is not unique
and there can exist different ways to create a corresponded
structure. Thus, the design of BBFNN automatically is required.
Furthermore, connected weights and Beta parameters which
include the center, width and form parameters of BBFNNs can be

learned by many methods, i.e., back-propagation algorithm [28],
genetic algorithm [5–7], differential evolution algorithm [1,3,4],
particle swarm optimization algorithm [2] and so on. In addition,
many important attempts have been developed to optimize
both structure and parameters of the BBFNN such as Hierarchical
Genetic Algorithm (HGA) [5] and Hierarchical Multi-dimensional
Differential Evolution (HMDDE) [26].

Although conventional representation of BBFNN has a number
of advantages such as better approximation capabilities and simple
network topologies, however adapting the matrix-representation
suffers from slow premature convergence characteristics and makes
the BBFNN's structure difficult to regulate. These reasons encourage us
to use the tree-based encoding method which was introduced by
Chen [8–14,17], for representing a BBF neural network and so the new
representation is called Flexible Beta Basis Function Neural Tree
(FBBFNT). This model is more flexible than the classical BBFNN seen
that it can find automatically the number of nodes as well as the
number of hidden layers.

In this paper, the FBBFNT model is applied to benchmark
problems drawn from control system and time series prediction
area. Based on the predefined Beta operator sets, a flexible Beta
basis function neural tree model can be created and evolved. The
hierarchical structure is evolved using the Extended Genetic
Programming (EGP). The fine tuning of the Beta parameters
(center, spread and the form parameters) and weights encoded
in the structure is accomplished using the Opposite-based Particle
Swarm Optimization algorithm (OPSO).

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.01.024

n Corresponding author. Tel.: þ216 22 172 000.
E-mail addresses: souhir.bouaziz@ieee.org (S. Bouaziz),

habib.dhahri@ieee.org (H. Dhahri), adel.alimi@ieee.org (A.M. Alimi),
ajith.abraham@ieee.org (A. Abraham).

Neurocomputing 117 (2013) 107–117

Author's personal copy

The remainder of this paper is organized as follows: Section 2
describes the basic flexible Beta basis function neural tree. A
hybrid learning algorithm for evolving the Beta function neural
tree model is the subject of Section 3. The set of some simulation
results are provided in Section 4. Finally, some concluding remarks
are presented in Section 5.

2. Flexible Beta Basis Function Neural Tree model

The Beta function is the name used by Legendre and Whittaker
and Watson (1990) for the Beta integral (also called the Eulerian
integral of the first kind). The first time where the Beta function
was used as transfer function for neural networks was in 1997 by
Alimi [16].

This function was chosen as a transfer function for many
reasons [33–36], including, its large flexibility (Fig. 1), its universal
approximation characteristics [6,7] and its ability to generate rich
shapes (asymmetry, linearity, etc.) [15].

The Beta basis function is defined by:

βðx,x0,x1, p, qÞ ¼
x−x0
c−x0

� �p
x1−x
x1−c

� �q
if x∈�x0,x1½

0 else

8<
: ð1Þ

where p40, q40, x0,x1 are the real parameters, x0ox1 and
c¼px1þqx0/pþq is the center of beta function.

Let s¼x1−x0, s is the width of the beta function which can be
seen as a scale factor for the distance ||x−c||. So:

x0 ¼ c− sp
pþq

x1 ¼ cþ sq
pþq

8<
: ð2Þ

(1) and (2) ¼4

βðx,c,s, p, qÞ ¼
1þ ð pþ qÞðx−cÞ

sp

h ip
1− ð pþ qÞðc−xÞ

sq

h iq
if x∈�c− sp

pþq ,cþ sq
pþq ½

0 else

8>><
>>: ð3Þ

Some proprieties taken from [33] in the one-dimensional case
are presented as following:

βðx0Þ ¼ βðx1Þ ¼ 0, ð4Þ

βðxcÞ ¼ 1, ð5Þ

dβðxÞ
dx

¼ px1þqx0−ðpþqÞxÞ
ðx−x0Þðx1−xÞ

� �
βðxÞ, ð6Þ

dβðxcÞ
dx

¼ dβðx0Þ
dx

¼ dβðx1Þ
dx

¼ 0, ð7Þ

p
q
¼ xc−x0

x1−xc
ð8Þ

If p¼1, q¼0:

βðxÞ ¼
x−x0
x1−x0

� �
if x∈ x0,x1½ �

0 if xox0
1 if x4x1

8>><
>>: ð9Þ

So, Beta function may be considered as a piecewise linear
function of x, if (p¼1, q¼0) or (p¼0, q¼1).

For the multi-dimensional case, the Beta function has the some
proprieties as the one-dimensional because the multi-dimensional
Beta function is simply the product of m one-dimensional Beta
functions.

In addition, for any given Gaussian function Gauss(x,μ,s) and
for any given precision ε, there exists a Beta function β(x,x0,x1,p,q)
that approximates the Gaussian function with an error of less than
ε for any xϵℝ.

In this study, we have adopted a tree-based encoding for
representing the Beta basis function neural network instead of
the matrix-based encoding as it is more flexible and gives a more
modifiable and adjustable structure.

The FBBFNT is formed of a node set S representing the union of
function node set F and terminal node set T:

S¼ F∪T ¼ fþ2, þ3, …,þN ,=Ng∪fx1,…,xMg ð10Þ
Where:

� þn (n¼2, 3, …, N) denote non-terminal nodes and represent
flexible Beta basis functions with n inputs and N is the
maximum degree of the tree.

� /N is the root node and represent a linear transfer function.

Fig. 1. Examples of Beta Basis Function.

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117108

Author's personal copy

� x1, x2,…, xM are terminal nodes and defining the input vector
values.
The output of a non-terminal node is calculated as a flexible

neuron model (see Fig. 2).
In the creation process of Beta basis function neural tree, if a

function node, i.e., þn is selected, n real values are randomly
created to represent the connected weight between the selected
node and its offspring. In addition, seen that the flexible activation
function used for the hidden layer nodes is the beta function (3),
four adjustable parameters (the center cn, width sn and the form
parameters pn,qn) are randomly generated as flexible Beta operator
parameters.

For each non-terminal node, its total excitation is calculated by:

yn ¼ ∑n
j ¼ 1wjn xj ð11Þ

where xj(j¼1, …, n) are the inputs of the selected node and wj

(j¼1, …, n) are the connected weights.
The output of node þn is then calculated using (3) by:

outn ¼ βðyn,cn,sn, pn, qnÞ

¼
1þ ð pn þ qnÞðyn−cnÞ

snpn

h ipn
1− ð pn þ qnÞðcn−ynÞ

snqn

h i
qn

if yn∈�cn− snpn
pn þ qn

,cnþ snqn
pn þ qn

�
0 else

8>><
>>: ð12Þ

The output layer yields a vector by linear combination of the
node outputs of the last hidden layer to produce the final output.

A typical flexible Beta basis function neural tree model is
shown as Fig. 3. The overall output of flexible Beta basis function
neural tree can be computed recursively by depth-first method
from left to right.

3. The hybrid FBBFNT evolving algorithm

The optimization of FBBFNT includes the tree-structure and
parameter optimization. In this study, finding an optimal Beta
basis function neural tree structure is achieved by using Extended
Genetic Programming algorithm and the parameters implanted in
a FBBFNT are optimized by Opposite-based PSO.

3.1. Structure Optimization

The first step of the structure optimization is to create an initial
population of flexible Bata basis function trees with random

structures; i.e. uniformly distributed random number of layers in
[0, NL_Max] and uniformly distributed random number of nodes
for each layer in [0, NN_Max], where NL_Max (the maximum layer
number) and NN_Max (the maximum node number) are chosen
depending on the studied problem. The node parameters (Beta
parameters and connected weights with the offspring nodes) of
each tree are also randomly generated in its search spaces. Each
individual is then evaluated according to the fitness function
(Section 3.4).

In the second time, some neural tree variation operators, which
are an extension of standard GP, are applied to the population
individuals as following in order to generate a new generation:

3.1.1. Selection
The selection operator is used to select two parents from the

population in order to procreate a new child by crossover or
mutation operator. In this study firstly a truncation selection is
used by ranking all individuals according to their fitness. Then, a
threshold T (between 0 and 1) is applied such that the (1−T)% best
individuals are selected to survive to the next generation and the
remaining individuals are removed and replaced with new ones.
Individuals used for the replacement (crossover or mutation) are
selected by the binary tournament selection. For each individual,
two opponents are randomly chosen from all the parents and
offspring. For each comparison, if the fitness of individual exceeds
that of the opponent, it receives a selection.

3.1.2. Crossover
In EGP, the tree structure crossover operation is implemented

by taking randomly selected two sub-trees in the individuals and
selecting randomly one non-leaf node in the hidden layer for
each chromosome, and then swapping the selected sub-trees.
An example of crossover operator is shown in Fig. 4.

3.1.3. Mutation
four different mutation operators were used to generate offspring

from the parents (Fig. 5). These mutation operators are as follows:

1. Changing one leaf node: select one leaf node randomly in the
neural Beta basis function tree and replace it with another
leaf node;

2. Changing all the leaf nodes: select each leaf nodes in the neural
Beta basis function tree and replace it with another leaf node;

3. Growing: select a random leaf node in hidden layer of the
neural Beta basis function tree and replace it with a randomly
generated sub-tree;

4. Pruning: randomly select a Beta operator node in the neural
tree and replace it with a random leaf node.

Following the work of Chellapilla [18], the EGP tree mutation
operators were applied to each of the parents to generate an
offspring using the following steps:

(a) Define a number M which represents a sample from a Poisson
random variable.

(b) Select randomly M mutation operators from above four muta-
tion operator set.

(c) Apply these M mutation operators in sequence one after the
other to the parent to create the offspring.

After each mutation or crossover operator, a redundant term-
inals pruning operator will be applied, if it is possible; i.e. if a Beta
operator node has more than two terminals, the redundant
terminals should be deleted.

Fig. 2. A flexible neuron Beta operator.

Fig. 3. A typical representation of FBBFNT: function node set F¼{þ2, þ3, þ4,/4},
and terminal node set T¼{x1, x2, x3, x4}.

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117 109

Author's personal copy

Each individual of the new generation which is generated after
the variation operators cited above, is evaluated using the fitness
function (Section 3.4). If this generation is better than the previous
one, the population is updated. This procedure can be repeated
until the terminal criteria are achieved; i.e., a better structure is
found or a limit number of EGP iterations is reached.

3.2. The Particle Swarm Optimization algorithm

PSO was proposed by Kennedy and Eberhart [19] and is
inspired by the swarming behavior of animals. The initial popula-
tion of particles is randomly generated. Each particle has a position
vector denoted by xi. A swarm of particles ‘flies’ through the search

space; with the velocity vector vi of each particle. At each time
step, a fitness function is calculated by using xi. Each particle
records its best position corresponding to the best fitness, which
has done so far, in a vector pi. Moreover, the best position among
all the particles obtained in a certain neighborhood of a particle is
recorded in a vector pg. At each iteration t, using pi(t) and pg(t), a
new velocity for particle i is updated by:

viðtþ1Þ ¼ Ψ ðtÞ viðtÞþc1φ1ðpiðtÞ−xiðtÞÞ þc2φ2ðpgðtÞ−xiðtÞÞ ð13Þ

where c1,c2 (acceleration) and Ψ (inertia) are positive constant and
φ1 and φ2 are randomly distributed number in [0,1]. The velocity vi
is limited in [−vmax,þvmax]. Based on the calculated velocities,

Fig. 4. Examples of the EGP crossover operator: (a) Selected tree 1. (b) Selected tree 2. (c) Tree 1 after crossover operator with tree 2. (d) Tree 2 after crossover operator with
tree 2.

Fig. 5. Examples of the four EGP mutation operators: (a) Original tree. (b) Changing one leaf node. (c) Changing all the leaf nodes. (d) Growing. (e) Pruning.

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117110

Author's personal copy

each particle changes its position as the following equation:

xiðtþ1Þ ¼ xiðtÞþð1− Ψ ðtÞÞviðtþ1Þ ð14Þ

3.3. The Opposite-Based particle swarm optimization for parameter
optimization

The use of heuristic operators or the update of the position in
the PSO algorithm can mislead the finding of best particle by
heading it towards a bad solution. Consequently, the convergence
to the desired value becomes very expensive. To avoid these

drawbacks, research dichotomy is adapted to improve the general-
ization performance and accelerate the convergence rate. Thus the
reduction of the convergence time of the beta neural system is
done by dividing the search space in two subspaces and a concept
of the opposite number can be used to look for the guess solution
between the two search subspaces. This concept can be inte-
grated in the basic PSO algorithm to form a new algorithm called
Opposite-based Particle Swarm Optimization (OPSO).

In this study, a particle consists of the Beta parameters (center,
spread and the form parameters) and weights encoded in each
flexible Beta basis function neural tree, which will be optimized by
OPSO algorithm.

Fig. 6. The Hybrid Learning Algorithm for FBBFNT model.

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117 111

Author's personal copy

The learning process of OPSO is described as follows:

Step 0 (Initialization): At iteration t¼0, the initial positions
xi(t¼0) (i¼1, …, NP) which are NParam�NN matrix, are
generated uniformly distributed randomly;

xið0Þ ¼ ajþ randiðbj−ajÞ ð15Þ
Where:

� NP is the number of particles,
� NParm is the number of parameters (Beta parameters and

weights),
� NN is the number of FBBFNT nodes,
� [aj, bj] is the search space of each parameter.

Generate the opposite population as follows:

xið0Þ ¼
αi xið0Þþ aj þbj

2

� �
, if xið0Þo aj þbj

2

αi xið0Þ− aj þbj
2

� �
, if xið0Þ4 aj þbj

2

,αi∈�0, 1½

8><
>: ð16Þ

The initial velocities, vi(0), i¼1,…, NP, of all particles are randomly
generated.

Step 1 (Particle evaluation): Evaluate the performance of each
particle in the population according to the beta neural system
using a fitness function described in the next section.
Step 2 (Velocity update): At iteration t, the velocity vi of each
particle i is updated using pi(t) and pg(t). Here, the mutation
operator is adopted according to (13).

Table 1
FBBFNT parameters.

EGP

Parameter Initial value
Population size 50
Crossover probability 0.3
Mutation probability 0.6
Generation gap 0.9
Maximum EGP iteration number 1000

OPSO
Parameter Initial value
Population size 50
Maximum OPSO iteration number 4000
c1 0.8
c2 0.8

Hybrid learning algorithm
Parameter Initial value
Maximum global iteration number 40,000
Connected weights rand[0, 1]
Beta center rand[min(x), max(x)]
Beta spread rand[0, |max(x)-min(x)|]
Beta form parameters ((p, qÞ rand[0,5]

Fig. 7. The evolved FBBFNT for prediction of the Mackey-Glass time-series.

0 50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8

1

1.2

1.4

Data training

ou
tp

ut

0 50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8

1

1.2

1.4

Data testing

ou
tp

ut

Real output

FBBFNT output

Fig. 8. The actual time series data and the output of the evolved FBBFNT model for forecasting Mackey-Glass data.

Fig. 9. The evolved FBBFNT for prediction of the Jenkins–Box time-series
(y(t−1), u(t−4)).

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117112

Author's personal copy

Step 3 (Position update): Depending on their velocities, each
particle changes its position and its opposite- position accord-
ing to the Eq. (14):

xiðtþ1Þ ¼ xiðtÞþð1−Ψ ðtÞÞ viðtþ1Þ ð17Þ

xiðtþ1Þ ¼ xiðtÞþð1−Ψ ðtÞÞviðtþ1Þ ð18Þ

Step 4 (pi and pg update): After traveling the whole population
and changing the individual positions, the values of pi(t) and
pg(t) obtained so far are updated.
Step 5 (End criterion): The OPSO learning process ends when a
predefined criterion is met. In this study, the criterion is the
goal or total number of OPSO iterations.

3.4. Fitness function

To find an optimal FBBFNT, the Root Mean Squared Error
(RMSE) is employed as a fitness function:

FitðiÞ ¼
ffi
1
P
∑P

j ¼ 1ðy
j
t−y

j
outÞ2

r
ð19Þ

where p is the total number of samples, yjt and yjout are the desired
output and the FBBFNT model output of jth sample. Fit(i) denotes
the fitness value of ith individual.

3.5. The Learning Algorithm for FBBFNT model

To find an optimal or near-optimal FBBFNT model, structure
and parameters optimization are used alternately.

Combining of the EGP and OPSO algorithms, a hybrid algorithm
for evolving FBBFNT model is described as follows and is depicted
in Fig. 6:

(a) Randomly create an initial population (FBBFNT trees and its
corresponding parameters); G¼0, where G is the generation
number of the learning algorithm;

global iterations¼ 0;

(b) Structure optimization is achieved by the Extended Genetic
Programming (EGP) as described in Section 3.1;

(c) If a better structure is found or a maximum number of EGP
iterations is attained, then go to step (d),

global iterations¼ global iterationsþEGP iterations;

otherwise go to step (b);
(d) Parameter optimization is achieved by the OPSO algorithm.

The architecture of FBBFNT model is fixed, and it is the best
tree found by the structure search. The parameters (weights
and flexible Beta function parameters) encoded in the best tree
formulate a particle;

(e) If the maximum number of OPSO iterations is attained, or no
better parameter vector is found for a fixed time then go to
step (f);

global iterations¼ globa literationsþOPSO iterations;

otherwise go to step (d);
(f) If satisfactory solution is found or a maximum global iteration

number is reached, then the algorithm is stopped; otherwise
let (G¼Gþ1) and go to step (b);

4. Experimental results

To evaluate its performance, the proposed FBBFNT model is
submitted to various benchmark problems: Mackey-Glass chaotic
time series, the Jenkins–Box time series and an example of non-
linear control system. The set of parameters which we used for our
algorithm are: Population size, Crossover probability Mutation
probability, Generation gap and Maximum EGP iteration number
for the Extended Genetic Programming; Population size, Max-
imum OPSO iteration number, c1 and c2 for the Opposite-based
Particle Swarm Optimization; and Maximum global iteration

Table 2
Comparison of different methods for the Mackey-Glass time-series.

Method Training error (RMSE) Testing error (RMSE)

PSO-BBFN [2] – 0.027
HMDDE–BBFNN [26] 0.0094 0.0170
Aouiti [6] – 0.013
Classical RBF [21] 0.0096 0.0114
CPSO [32] 0.0199 0.0322
HCMSPSO [31] 0.0095 0.0208
FNT [9] 0.0069 0.0071
FBONT [37] 0.0074 0.0076
FBBFNT 0.0061 0.0068

0 20 40 60 80 100 120 140 160 180 200
0.7

0.8

0.9

1

1.1

Data training

ou
tp

ut

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

Data testing

ou
tp

ut

Real output
FBBFNT output

Fig. 10. The actual time series data, output of the evolved FBBFNT model for forecasting Jenkins–Box data (y(t−1), u(t−4)).

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117 113

Author's personal copy

number for the Hybrid learning algorithm. After many experiences
of the system parameters, the chosen parameters to be used for all
problems are as listed in Table 1.

For all examples the illustrated results are obtained by aver-
aging the results in 15 runs.

4.1. Example 1: Mackey–Glass time series prediction

A time-series prediction problem can be constructed based on
the Mackey–Glass [20] differential equation:

dðxðtÞÞ
dt

¼ axðt−τÞ
1þxcðt−τÞ−bxðtÞ ð20Þ

The setting of the experiment varies from one work to another.
In this work, the same parameters of [26,9], namely a¼0.2, b¼0.1,
c¼10 and τ≥17, were adopted, since the results from these works
will be used for comparison. As in the studies mentioned above,
the task of the neural network is to predict the value of the time
series at point x(tþ6), with using the inputs variables x(t), x(t−6), x
(t−12), x(t−18). 1000 sample points are used in our study. The first
500 data pairs of the series are used as training data, while the
remaining 500 [9,26] are used to validate the model identified. The
used Beta operator sets to create an optimal FBONT model is
S¼ F∪T¼ þ2, þ3,þ4,þ5, =5

� �
∪ x1, x2,x3,x4f g, where xi(i¼1, 2, 3,

4) denotes x(t), x(t−6), x(t−12) and x(t−18), respectively. After 16
generations (G¼16) and 23020 global iterations of the hybrid

learning algorithm, an optimal FBBFNT model was obtained with
RMSE 0.006101. The RMSE value for validation data set is
0.006823. The evolved FBBFNT is shown in Fig. 7. The actual
time-series data and the output of FBBFNT model are shown
in Fig. 8.

The proposed system is essentially compared with Hierarchical
multi-dimensional differential evolution for the design of beta
basis function neural network (HMDDE-BBFNN) [26] and the FNT
model with Gaussian function as flexible neuron operator [9] and
also with other systems. The HMDDE-BBFNN approach adopts for
parameters: 50 to the population size and 10000 to a total number
of iterations. Moreover, the parameter setting for the FNT system
[9] are 30 to the population size and 135 as generation number.
A comparison result of different methods for forecasting Mackey-
Glass data is shown in Table 2. As observed, the FBBFNT achieves
the lowest testing and training error.

4.2. Example 2: Box and Jenkins’ Gas Furnace Problem

The gas furnace data of Box and Jenkins [22] was saved from a
combustion process of a methane-air mixture. It is frequently used
as a benchmark example for testing prediction algorithms. The
data set forms of 296 pairs of input-output measurements.
The input u(t) is the gas flow into the furnace and the output y
(t) is the CO2 concentration in outlet gas.

The inputs for constructing FBBFNT model are y(t−1), u(t−4),
and the output is y(t). In this work, 200 data samples are used for

Table 4
Comparison of training and testing errors of Box and Jenkins.

Input Training error (RMSE) Testing error (RMSE)

ODE [30] HMDDE [26] FBBFNT ODE [30] HMDDE [26] FBBFNT

y(t−1), u(t−3) 0.1411 0.1328 0.003460 0.4194 0.2276 0.011457
y(t−3), u(t−4) 0.2850 0.0210 0.006017 0.7773 0.4224 0.020998
y(t−2), u(t−4) 0.2898 0.1365 0.005719 0.6602 0.3200 0.016534
y(t−1), u(t−2) 0.2924 0.1735 0.005757 0.6801 0.2334 0.011496
y(t−1), u(t−4) 0.2926 0.2411 0.011618 0.5132 0.3745 0.004796
y(t−4), u(t−4) 0.3428 0.1594 0.007112 0.8894 0.4549 0.023775
y(t−2), u(t−3) 0.3051 0.1702 0.006611 0.7199 0.2700 0.018575
y(t−1), u(t−1) 0.4151 0.1598 0.012439 0.6056 0.2577 0.012123
y(t−4), u(t−3) 0.4301 0.1921 0.014273 1.2771 0.6148 0.028954
y(t−1), u(t−6) 0.5661 0.6619 0.012475 0.8410 0.6638 0.012193
y(t−3), u(t−3) 0.5176 0.1600 0.010645 1.0347 0.2521 0.025013
y(t−2), u(t−2) 0.9753 0.2773 0.015724 0.6261 0.1615 0.025640
y(t−1), u(t−5) 0.6303 0.3333 0.012425 0.6518 0.5595 0.012250
y(t−4), u(t−5) 0.6373 0.0178 0.011611 0.9698 0.0203 0.010810
y(t−2), u(t−1) 0.6844 0.1960 0.023624 1.2726 0.2759 0.022670
y(t−2), u(t−5) 0.6804 0.2165 0.023612 1.1808 0.4021 0.022377
y(t−3), u(t−5) 0.7338 0.1346 0.013797 1.0470 0.2307 0.018032
y(t−3), u(t−2) 0.8600 0.2128 0.032620 1.4138 0.2760 0.030713
y(t−4), u(t−6) 1.1126 0.1379 0.020954 1.4677 0.2635 0.024996
y(t−2), u(t−6) 0.8600 0.2128 0.023613 1.2639 0.5590 0.022504
y(t−4), u(t−2) 1.1963 0.2152 0.022968 1.6377 0.2737 0.033545
y(t−3), u(t-6) 0.8600 0.2128 0.033015 1.4641 0.4027 0.030156
y(t−−3), u(t−1) 1.2702 0.2135 0.032628 1.6475 0.2803 0.030708
y(t−4), u(t−1) 2.0217 0.2695 0.039824 2.0217 0.2695 0.036392

Fig. 11. The evolved FBBFNT for nonlinear plant control.

Table 3
Comparison of testing errors of Box and Jenkins.

Method Prediction error (RMSE)

ANFIS model [23] 0.0845
FuNN model [24] 0.0714
HyFIS model [25] 0.0648
FNT [9] 0.0256
HMDDE [26] 0.2411
FBBFNT 0.011618

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117114

Author's personal copy

training and the remaining data samples are used for testing the
performance of the evolved model.

The used instruction set for creating a FBBFNT model is
S¼ F∪T¼ þ2, þ3,þ4, =4

� �
∪ x1, x2f g, where xi(i¼1, 2) denotes

y(t−1), u(t−4), respectively.
After 10 generations (G¼10) and 11031 global iterations of the

learning algorithm, the optimal Beta basis function neural tree
model was obtained with the RMSE 0.004796. The RMSE value for
validation data set is 0.011618. The evolved FBBFNT is shown in
Fig. 9. The actual time-series data and the output of FBBFNT model
are shown in Fig. 10. A comparison result of different methods for
forecasting Jenkins–Box data is shown in Table 3.

In order to illustrate again the performance of our approach, we
have taken two inputs the first one is from furnace output and
other is from furnace input. Therefore we have construct 24
models of different input-output and the training and testing
performances of these models are given in Table 4.

From the above simulation results, it can be seen that the
proposed FBBFNT model works well for generating prediction
models of Box and Jenkins’ gas furnace problem.

4.3. Example 3: Nonlinear Plant Control

In this example, the nonlinear system [22] to be controlled is
expressed by:

ypðtþ1Þ ¼ ypðtÞ½ypðt−1Þþ2�½ypðtÞþ2:5�
8:5þ½ypðtÞ�2þ½ypðt−1Þ�2

þuðtÞ ð21Þ

where yp(t) is the output of the system at the tth time step and u(t)
is the plant input which is uniformly bounded in the region [−2,
2]. The identification model is in the form of:

ypðtþ1Þ ¼ f ðypðtÞ,ypðt−1ÞÞþuðtÞ ð22Þ

where f(yp(t)), yp(t−1)) is the nonlinear function of yp(t) and yp(t−1)
that will be the inputs of FBBFNT. The output from neural systemwill
be yp(tþ1). In this example, 500 data samples are used for training
and 500 data samples are used for testing the performance of the

evolved model. The input signal u(t) is calculated as following:

uðtÞ ¼
2cosð2πt=100Þ if t≤200
1:2sinð2πt=20Þ if 200ot≤500

(
ð23Þ

The used instruction set for creating a FBBFNT model
S¼ F∪T ¼ þ2, þ3,þ4,=4

� �
∪ x1, x2f g, where xi (i¼1, 2) denotes

yp(t), yp(t−1), respectively.
After 17 generations (G¼17) and 20024 global iterations, the

optimal Beta operator neural tree model was obtained with
the RMSE 0.01882. The RMSE value for validation data set is
0.10161. The evolved FBBFNT is shown in Fig. 11. The actual
time-series data and the output of FBBFNT model are shown in
Fig. 12. A comparison result of different methods for forecasting
nonlinear plant control data is shown in Table 5. The performance
of FBBFNT in error fitness is better than that of ODE and those
HMDDE. Results show that applying the FBBFNT for the nonlinear
plant control system improves the generalization error.

5. Conclusion

In this paper, a hybrid learning algorithm is proposed to create
and evolve a Flexible Beta Basis Function Neural Tree (FBBFNT) model
for various benchmark problems. The work demonstrates that the
new learning algorithm can successfully optimize the structure and
parameters of Beta basis function neural network simultaneously by
using a tree representation. In fact, the FBBFNT structure is developed
using Extended Genetic Programming (EGP) and the Beta parameters
and connected weights are optimized by the Opposite-based Particle
Swarm Optimization algorithm (OPSO).

The experiment results show that the FBBFNT model can
effectively predict the time-series problem such as Mackey-Glass
chaotic time series, the Jenkins–Box time series and an example of
nonlinear plant control system.

Acknowledgment

The authors would like to acknowledge the financial support of
this work by grants from the General Direction of Scientific

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1

1.5

Time step

Pl
an

t o
ut

pu
t

actual
FBBFNT

Fig. 12. FBBFNT identification performance.

Table 5
Comparison of training and testing errors of nonlinear plant control.

Input Training error (RMSE) Testing error (RMSE)

ODE [30] HMDDE [26] FBBFNT ODE [30] HMDDE [26] FBBFNT

y(k),y(k−1) u(k) 0.019 0.019 0.01882 0.1137 0.110 0.10161

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117 115

Author's personal copy

Research and Technological Renovation (DGRSRT), Tunisia, under
the ARUB program 01/UR/11/02. Ajith Abraham acknowledges the
support from the framework of the IT4Innovations Center of
Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by
Operational Program ‘Research and Development for Innovations'
funded by Structural Funds of the European Union and state
budget of the Czech Republic.

References

[1] H. Dhahri, A.M. Alimi, Opposition-based differential evolution for beta basis
function neural network, IEEE Congress on Evolutionary Computation, Barce-
lona, Spain, 2010, pp. 1–8.

[2] H. Dhahri,, A.M. Alimi, F. Karray, Designing beta basis function neural network
for optimization using particle swarm optimization, IEEE International Joint
Conference on Neural Networks, Hong Kong, China, 2008, pp. 2564–2571.

[3] H. Dhahri, A.M. Alimi, Automatic selection for the beta basis function neural
networks, NICSO (2007) 461–474.

[4] H. Dhahri, A.M. Alimi, The modified differential evolution and the RBF (MDE-
RBF) neural network for time series prediction, in: Proceedings of the
International Conference, 2006, pp. 5245–5250.

[5] C. Aouiti, A.M. Alimi, K. Karray, A. Maalej, The design of bate basis function
neural network and beta fuzzy systems by a hierarchical genetic algorithm,
Fuzzy Sets Syst. 154 (2005) 251–274.

[6] C. Aouiti, A.M. Alimi, A. Maalej, A genetic designed beta basis function neural
networks for approximating of multi-variables functions, in: Proceedings of
the International Conference Artificial Neural Nets and Genetic Algorithms
Springer Computer Science, Prague, Czech Republic, 2001, pp. 383–386.

[7] C. Aouiti, A.M. Alimi, K. Karray, A. Maalej, Genetic algorithms to construct beta
neuro-fuzzy systems, in: Proceedings of the International Conference Artificial
& Computational Intelligence for Decision, Control & Automation, Monastir,
Tunisia, 2000, pp. 88–93.

[8] Y. Chen, B. Yang, Q. Meng, Small-time scale network traffic prediction based on
flexible neural tree, Appl. Soft Comput. 12 (2012) 274–279.

[9] Y. Chen, B. Yang, J. Dong, A. Abraham, Time-series forecasting using flexible
neural tree model, Inf. Sci 174 (3/4) (2005) 219–235.

[10] Y. Chen, A. Abraham, B. Yang, Feature selection and classification using flexible
neural tree, Neurocomputing 70 (2006) 305–313.

[11] Y. Chen, S. Jiang, A. Abraham, Face recognition using DCT and hybrid flexible
tree, in: Proceedings of the International Conference on Neural Networks and
Brain, 2005, pp. 1459–1463.

[12] Y. Chen, L. Peng, A. Abraham, Gene expression profile using flexible neural
trees, IDEAL 4224 (2006) 1121–1128.

[13] Y. Chen, L. Peng, A. Abraham, Exchange rate forecasting using flexible neural
trees, Lect. Notes Comput. Sci. 518–523 (2006) 3973.

[14] Y. Chen, Q. Meng, Y. Zhang, Optimal design of hierarchical B-spline networks
for nonlinear system identification, in: Proceedings of the International
Conference on Sensing, Computing and Automation, 2006, pp. 3263–3268.

[15] A.M. Alimi, The Beta system: toward a change in our use of neuro-fuzzy
systems, international journal of management, invited paper, Int. J. Manage.
Invited Paper, June (2000) 15–19.

[16] A.M. Alimi, The Beta fuzzy system: approximation of standard membership
functions, in: Proceedings 17eme Journees Tunisiennes d'Electrotechnique et
d'Automatique, JTEA'97, Nabeul, Tunisia, November 1, 1997, pp. 108–112.

[17] Y. Chen, B. Yang, J. Dong, Evolving flexible neural networks using ant program-
ming and PSO algorithm, in: International Symposium on Neural Networks
(ISNN'04), Lecture Notes on Computer Science, 3173, 2004, pp. 211–216.

[18] K. Chellapilla, Evolving computer programs without subtree crossover, IEEE
Trans. Evol. Comput. 1 (3) (1998) 209–216.

[19] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the
1995 IEEE International Conference on Neural Networks. IEEE Press, Piscat-
away, NJ, vol. 4, 1995, pp. 1942–1948.

[20] M. Lzvbjerg, T. Krink, Extending particle swarms with self-organized criti-
cality, in: Proceedings of the Fourth Congress on Evolutionary Computation
(CEC-2002). IEE Press, Piscataway, NJ, USA, vol. 2, 2002, pp. 1588–1593.

[21] K.B. Cho, B.H. Wang, Radial basis function based adaptive fuzzy systems their
application to system identification and prediction, Fuzzy Sets Syst. 83 (1995)
325–339.

[22] G.E.P. Box, G.M. Jenkins, Time Series Analysis—Forecasting and Control, Holden
Day, San Francisco, CA, 1976.

[23] J. Nie, Constructing fuzzy model by self-organising counter propagation
network, IEEE Trans. Syst. Man Cybern. 25 (1995) 963–970.

[24] J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing: a
computational approach to learning and machine intelligence, Prentice-Hall,
Upper Saddle River, NJ, 1997.

[25] N. Kasabov, J.S. Kim, M. Watts, A. Gray, FuNN/2—a fuzzy neural network
architecture for adaptive learning and knowledge acquisition, Inf. Sci. 101
(1996) 155–175.

[26] H. Dhahri, A.M. Alimi, A. Abraham, Hierarchical multi-dimensional differential
evolution for the design of beta basis function neural network, Neurocomput-
ing 79 (2012) 131–140.

[27] M.A. Alimi, The recognition of Arabic handwritten characters with the Beta
neuro-fuzzy network. in: Proceedings 17éme Journées Tunisiennes d'Électro-
technique et d'Automatique, JTEA'97, Nabeul, Tunisia, vol. 1, 1997, pp. 349–356.

[28] M.A. Alimi, On-line analysis of handwritten Arabic: a new approach to
recognize segmented characters from cursive script, Les Annales Maghrébines
de l’ Ingénieur 14 (1) (2000) 7–27.

[29] H. Bezine, M.A. Alimi, N. Derbel, Handwriting trajectory movements con-
trolled by a beta-elliptic model, in: Proceedings of the 7th International
Conference on Document Analysis and Recognition: ICDAR'2003, Edinburgh,
UK, August 2003, pp. 1228–1232.

[30] B. Subudhi, D. Jena, A differential evolution based neural network approach to
nonlinear system identification, Appl. Soft Comput. 11 (1) (2011) 861–871.

[31] C.F. Juang, C.M. Hsiao, C.H. Hsu, Hierarchical cluster-based multispecies
particle-swarm optimization for fuzzy-system optimization, IEEE Trans. Fuzzy
Syst. 18 (1) (2010) 14–26.

[32] F. Van Den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Trans. Evol. Comput. 8 (3) (2004) 225–239, June.

[33] A.M. Alimi, in: W. Duch, D. Rutkowska (Eds.), Beta Neuro-Fuzzy Systems, TASK
Quarterly Journal, Special Issue on “Neural Networks”, vol. 7, 2003, pp. 23–41.

[34] A.M. Alimi, What are the advantages of using the beta neuro-fuzzy system?,
in: Proceedings of the IEEE/IMACS Multiconference on Computational Engi-
neering in Systems Applications, Tunisia, vol. 2, 1998, pp. 339–344.

[35] M. Masmoudi, M. Samet, M.A. Alimi, A bipolar implementation of the Beta
Neuron, Int. J. Electron. 87 (6) (2000) 675–682.

[36] M. Njah, A.M. Alimi, M. Chtourou, A learning algorithm for the Beta neuro-
fuzzy network, in: Proceedings of the International Conference Artificial and
Computational Intelligence for Decision, Control and Automation, Monastir,
Tunisia, 2000, pp. 76–81.

[37] S. Bouaziz, H. Dhahri, A.M. Alimi, Evolving Flexible Beta Operator Neural Trees
(FBONT) for time series forecasting, T. Hung et al. (Eds.), in: Proceedings of the
19th International Conference in neural information Processing(ICONIP'12),
Part III, Series: Lecture Notes in Computer Science, vol. 7665, Doha-Qatar,
2012, pp. 17–24.

Souhir Bouaziz was born in Sfax (Tunisia) in 1984. She
graduated in Computer Engineering 2008. She is cur-
rently working toward the Ph.D. degree with the
University of Sfax.

Her research interest includes computational intelli-
gence: neural network, evolutionary computation,
swarm intelligence.

Habib Dhahri was born in Sidi Bouzid (Tunisia) in
1966. He graduated in computer science 2001. He is
currently working toward the Ph.D. degree with the
University of Sfax.

His research interest includes computational intelli-
gence: neural network, swarm intelligence, differential
evolution, and genetic algorithm.

Adel M. Alimi was born in Sfax (Tunisia) in 1966. He
graduated in Electrical Engineering 1990, obtained a
Ph.D. and then an HDR both in Electrical & Computer
Engineering in 1995 and 2000 respectively. He is now
professor in Electrical & Computer Engineering at the
University of Sfax.

His research interest includes applications of intelli-
gent methods (neural networks, fuzzy logic, evolution-
ary algorithms) to pattern recognition, robotic systems,
vision systems, and industrial processes. He focuses his
research on intelligent pattern recognition, learning,
analysis and intelligent control of large scale complex
systems.

He is associate editor and member of the editorial board of many international
scientific journals (e.g. “Pattern Recognition Letters”, “Neurocomputing”, “Neural
Processing Letters”, “International Journal of Image and Graphics”, “Neural Com-
puting and Applications”, “International Journal of Robotics and Automation”,
“International Journal of Systems Science”, etc.).

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117116

Author's personal copy

He was guest editor of several special issues of international journals (e.g. Fuzzy
Sets & Systems, Soft Computing, Journal of Decision Systems, Integrated Computer
Aided Engineering, Systems Analysis Modelling and Simulations). He was the
general chairman of the International Conference on Machine Intelligence ACIDCA-
ICMI’2005 & 2000. He is an IEEE senior member and member of IAPR, INNS and
PRS. He is the 2009–2010 IEEE Tunisia Section Treasurer, the 2009–2010 IEEE
Computational Intelligence Society Tunisia Chapter Chair, the 2011 IEEE Sfax
Subsection, the 2010–2011 IEEE Computer Society Tunisia Chair, the 2011 IEEE
Systems, Man, and Cybernetics Tunisia Chapter, the SMCS corresponding member
of the IEEE Committee on Earth Observation, and the IEEE Counselor of the ENIS
Student Branch.

Ajith Abraham received the Ph.D. degree in Computer
Science from Monash University, Melbourne, Australia.

He is currently the Director of Machine Intelligence
Research Labs (MIR Labs), Scientific Network for Inno-
vation and Research Excellence, USA, which has mem-
bers from more than 85 countries. He has a worldwide
academic and industrial experience of over 20 years. He
works in a multi-disciplinary environment involving
machine intelligence, network security, various aspects
of networks, e-commerce, Web intelligence, Web ser-
vices, computational grids, data mining, and their
applications to various real-world problems. He has
numerous publications/citations (h-index 40) and has

also given more than 50 plenary lectures and conference tutorials in these areas.
Since 2008, he is the Chair of IEEE Systems Man and Cybernetics Society Technical

Committee on Soft Computing and a Distinguished Lecturer of IEEE Computer
Society representing Europe (since 2011). Dr. Abraham is a Senior Member of the
IEEE, the Institution of Engineering and Technology (UK) and the Institution of
Engineers Australia (Australia), etc. He is the founder of several IEEE sponsored
annual conferences, which are now annual events. More information at: http://
www.softcomputing.net.

S. Bouaziz et al. / Neurocomputing 117 (2013) 107–117 117

