جامعة الملك سعود كلية العلوم قسم الرياضيات

الزمن : ثلاث ساعات

أجب عن الأسئلة الآتية

السؤال الأول:

(أ) انف التقرير الآتي وعين قيمة صوابه بعد النفي:

 $\exists x,y\in\mathbb{Z}^+\ni x\nmid y \land y\nmid x$

(ب) أنبت باستخدام الاستقراء الرياضي ما يلي :

 $\forall n \in \mathbb{Z}^+: n < 2^n$

(ج) استفد من الفقرة (ب) في برهان صحة العبارة الآتية:

مجموعة منتهية $S \Longrightarrow |S| < |P(S)|$

السؤال الثاني:

(أ) أُعطَّ مثالًا واحدا مقط لكل مما يأتي: 1) زمرة غير إبدالية

1) زمرة غير إبدالية تبتها 22 أورة دائرية ضربية رتبتها 22 .

. عامر منته $f:\mathbb{Z} o \mathbb{Z}$ بحیث یکون متبایناً وغیر عامر (4 |F|>20 بحیث یکون متبایناً وغیر عامر (3

(ب) إذا كانت R علاقة معرفة على $^+ \mathbb{R}$ كما يلي :

 $\forall a.b \in \mathbb{R}^+: aRb \Longleftrightarrow \frac{a}{b} \in \mathbb{Q}^+$

فأثبت أن R علاقة تكافؤ على \mathbb{R}^+ ، ومن ثم جد صنف تكافؤ العدد 1 .

(ج) املأ الفراغ الآت*ي* :

$$\sigma = \binom{1\ 2\ 3\ 4\ 5\ 6}{5\ 4\ 6\ 2\ 3\ 1} \in S_6 \Longrightarrow |\sigma| = \cdots$$

السوال الثالث:

(أ) أثبت صحة أو خطأ كل عبارة فيما يأتى:

 $f^{-1}(B)\subset A$ أذا كان f:A o B تطبيقا فإن (1

2) إن علاقة قاسم لـ "|" على * ليست علاقة تخالفيه .

. $x,y\in\mathbb{Q}$ ککل x*y=xy+1 محاید في النظام (x*y=xy+1 محاید في النظام (x*y=xy+1

. $\mathbb{Z}\subseteq\mathbb{R}
Rightarrow\mathbb{Z}^2\subseteq\mathbb{R}^3$ إن (4)

: ناجب عما يلي $f:(\mathbb{R}^*\,,\,\,\cdot) o(\mathbb{R}^*\,,\,\,\cdot)$ ناجب عما يلي $f:(\mathbb{R}^*\,,\,\,\cdot)$ ناجب عما يلي

. $x^{-1} = \cdots$ املأ الفراغ (1

f أثبت أن f تشاكل f

(ker f (أي ker f).

السؤال الرابع:

(أ) متى نقول إن 5 مجموعة غير منتهية ؟

: مجموعة الأعداد الفردية الموجبة فأجب عما يلي $f(x)=rac{x+1}{2}$ ، حيث D مجموعة الأعداد الفردية الموجبة فأجب عما يلي $f:D o \mathbb{Z}^+$

. أثبت أن f تقابل f

2) أَثْبَتَ أَنَ $+ \hat{\mathbb{Z}}$ مجموعة غير منتهية مستفيداً من (أ) وَ (ب) .

. D ميّن قاعدة التطبيق f^{-1} من \mathbb{Z}^+ إلى

|D| = |Z| ولماذا |D| = |Z|

الزمن: ساعة ونصف

أجب عن الأسئلة الآتية

السؤال الأول:

أثبت صحة أوْ خطأ كل عبارة فيما يلى:

- $a,b\in\mathbb{R}$ لكل $a*b=a^b$ ديث ، حيث $(\mathbb{R}_+,*)$ لكل (أ)
- (ب) إذا كان العنصران $\overline{2}$ وَ $\overline{6}$ في النظام $(\overline{\mathbb{Z}}_9, \overline{\mathbb{Z}})$ فإن لكل منهما نظير ضربي .
 - (ج) أي مجموعتين غير منتهيتين وقابلتين للعد تكونان متكافئتين .
 - (د) إن النظام $(P(S), \cup, -)$ ذو عمليتين فيه " " تتوزع على " \cup " .

السوال الثاني:

- (أ) أعط مثالاً واحداً فقط لزمرة ضربية رتبتها 46.
- (ب) متى نقول عن مجموعة 5 إنها غير منتهية ؟ و إنها غير منتهية A مجموعة غير منتهية .
- $f(x)=\overline{x}$: حیث $f:(\mathbb{Z}_{8},+) o(\overline{\mathbb{Z}}_{8},\oplus)$ کان $f:(\mathbb{Z}_{8},+) o(\overline{\mathbb{Z}}_{8},\oplus)$ نظبت أن f تشاكل f هومومورفیزم f غیر متباین .

الزمن: ساعة ونصف

أجب عن الأسئلة الآتية

السوال الأول:

- (۱) أكمل الفراغات الآتية : $\sim \left[orall \ a \in \mathbb{R}: \ a^2 \ 2a + 1 \geq 0
 ight] \equiv \cdots$ (1
 - $\mathbb{R}^5 = \{\dots \dots \}$ (2)
- $|P(A \times B)| = \cdots$ أَذَا كَانَتَ A وB مجموعتين بحيث A = A و A أَذَا كَانَتَ A وA
 - 4) نقول إن R علاقة ترتيب كلي على مجموعة 5 إذا حققت الشروط الآتية:
 - (ب) أثبت صحة أوْ خطأ كل عبارة فيما يأتى:
 - $\mathbb{Z}\subseteq\mathbb{Q}\ \Rightarrow\mathbb{Z}^2\subseteq\mathbb{Q}^4$ (1
 - $x \notin 2\mathbb{Z}^+$ إذا كان x عددا أوليا فإن
 - $-25 \in \overline{3}$ فإن $\overline{3} \in \overline{\mathbb{Z}}_7$ إذا كان
 - $\overline{y} \neq \emptyset$ فإن $y \in A$ وكان A وكان A علاقة تكافؤ في A وكان أذا كانت أ

السوال الثاني:

- (أ) متى نقول عن مجموعتين A و B إنهما منفصلتان ؟
- (ب) استخدم جداول الانتماء في إثبات صحة ما يلي : $A\Delta B = (A\cup B) (A\cap B)$ فأن $A \in A$
- $P = \{\{1,3,5\},\{2,4\}\}$ نجزئة لمجموعة S فأكمل الآتي :
- $S = \{\dots \dots \}$ (1) $\{ R = \dots \}$ (2) إذا كانت $\{ R = \dots \}$ هي علاقة التكافؤ الناتجة عن التجزئة $\{ P = \dots \}$
 - : فاثبت أن $aRb \Leftrightarrow \overline{a} = \overline{b}$ وكان A وكان A علاقة تكافؤ في B وكان $B \in \overline{a} \Leftrightarrow \overline{a} = \overline{b}$

إجابة السؤال الأول:

. F وقيمة صوابه هي $\forall x,y \in \mathbb{Z}^+ \colon x|y \lor y|x$ وقيمة صوابه هي (أ): النفي هو

عندما n=1 نجد أن الطرف الأيسر =1 والطرف الأيمن =2 لذا فإن التقرير صانب عندما n=1.

$$K<$$
 کما یلی: $n=K+1$ کما یکن التقریر صائب عندما $n=K+1$ کما یلی: $K<2^K$ کما یکن التقریر صائب عندما $n=K+1$ کما یلی: $K<2^K$ کما یلی: $K<1$ کما یکن التقریر صائب عندما کما یکن التقریر صائب عندما کما یکن التقریر صائب عندما تکون التقریر صائب التحقیق کما یکن التحقیق کما

(ج) : عندما تكون S منتهية فإن S = |S| = 1 وحيننذ يكون $P(S) = 2^{
m n}$ (نظرية) وباستخدام فقرة (ب) يكون لدينا

.
$$|S|=0 < 2^0=1$$
 ، لأن $S=\emptyset$ ، كما أن هذا صحيح عندما تكون $|S|=n < 2^n=|P(S)|$

إجابة السؤال الثاني:

$$f(x)=2x$$
 میٹ، $f\colon \mathbb{Z} o \mathbb{Z}$ (4 $(\mathbb{Z}_{23},+,\cdot)$ (3 $(\mathbb{Z}_{23}^*,\cdot)$ (2 S_3 (1 : (۱)

$$orall a\in\mathbb{R}^+:rac{a}{a}=1\in\mathbb{Q}^+\Leftrightarrow aRa:$$
انعکاسیة ، لأن R (1

$$a,b\in\mathbb{R}^+
i aRb \Rightarrow rac{a}{b}\in\mathbb{Q}^+ \Rightarrow rac{b}{a}\in\mathbb{Q}^+ \Rightarrow bRa$$
 : تنظرية ، لأن R تنظرية ، و

: متعدية ، لأن **R** (3

$$a, b, c \in \mathbb{R}^+ \ni aRb \land bRc \Rightarrow \frac{a}{b} \in \mathbb{Q}^+ \land \frac{b}{c} \in \mathbb{Q}^+ \Rightarrow \frac{a}{b} \cdot \frac{b}{c} = \frac{a}{c} \in \mathbb{Q}^+ \Rightarrow aRc$$

اذن R علاقة تكافؤ في \mathbb{R}^+ ويكون:

$$\overline{1} = [1] = \left\{ x \in \mathbb{R}^+ : xR1 \Leftrightarrow \frac{x}{1} \in \mathbb{Q}^+ \Leftrightarrow x \in \mathbb{Q}^+ \right\} = \mathbb{Q}^+$$

(ج) : |σ| = 4
 إجابة السؤال الثالث :

. عبارة خاطنة ، لأن
$$f$$
 f يقتضي وجود f يقتضي وجود f بحيث f وهذا يتناقض مع كون f تطبيق . f

.
$$(2|-2)$$
 \wedge $(-2|2) $\Rightarrow 2=-2$: عبارة صانبة ، فمثلا (2$

: عبارة خاطنة ، لأنه بفرض $e\in\mathbb{Q}$ عنصر محايد يكون لدينا

$$orall \ x \in \mathbb{Q}: x*e = x = xe + 1 \Rightarrow xe = x - 1 \Rightarrow e = rac{x-1}{x}
otin \mathbb{Q}$$
 ($x = 0$ عندما)

 $(2,3)
otin\mathbb{R}^3$ عبارة صانبة ، فمثلاً \mathbb{Z}^2 ولكن $(2,3)\in\mathbb{Z}^2$ و

$$x^{-1} = \frac{1}{x}$$
 (1)

$$\forall x, y \in \mathbb{R}^* : f(xy) = (xy)^{-1} = \frac{1}{xy} = \frac{1}{x} \cdot \frac{1}{y} = f(x)f(y)$$
 (2)

وراة
$$f$$
 نواة $= \ker f = f^{-1}(1) = \left\{x \in \mathbb{R}^* : f(x) = 1 \Leftrightarrow \frac{1}{x} = 1 \Leftrightarrow x = 1\right\} = \{1\}$ نواة $= \ker f = f^{-1}(1) = \left\{x \in \mathbb{R}^* : f(x) = 1 \Leftrightarrow \frac{1}{x} = 1 \Leftrightarrow x = 1\right\} = \{1\}$ نواة $= \operatorname{ker} f = f^{-1}(1) = \operatorname{$

$$x,y\in D
ightarrow f(x)=f(y)\Rightarrow rac{x+1}{2}=rac{y+1}{2}\Rightarrow \cdots\Rightarrow x=y:$$
 مثباین ، لان ، لان با f $x\in \mathbb{Z}^+\Rightarrow\exists\; x=2y-1\in D
ightarrow f(x)=rac{x+1}{2}=rac{(2y-1)+1}{2}=y:$ علم ، لان f

ما تقدم نجد أن f تقابل .

من (1) نجد أن
$$\mathcal{Z}^+$$
 مع كون \mathcal{Z}^+ و بالتالي فإن \mathcal{Z}^+ مجموعة غير منتهية .

$$f^{-1}(\mathbf{x}) = 2\mathbf{x} - 1$$
. فاعدته هی $f^{-1}: \mathbb{Z}^+ o D$ (3

.
$$|m{D}| = |\mathbb{Z}^+| \Leftrightarrow$$
 (1) من $m{D} pprox \mathbb{Z}^+$ نعم ، لأن $m{D} pprox \mathbb{Z}^+$ من . (4

إجابة السؤال الأول:

$$-1*rac{1}{2}=-1^{1/2}=\sqrt{-1}
otin \mathbb{R}:$$
 عبارة خاطئة ، فمثلا : (أ)

- (ب) : عبارة خاطئة ، لأن $\overline{2}$ في $\overline{2}$ له نظير ضربي هو $\overline{5}$ في حين أن $\overline{6}$ ليس له نظير ضربي في $\overline{2}$ ، $\vec{8}$ لأن $1 \neq (6,9) \neq 1$
 - (ج): عبارة صائبة ، لأنه بفرض أن H و K مجموعتان غير منتهيتين وقابلتين للعد يكون لدينا:

$$H pprox \mathbb{Z}^+ \ ^{\wedge} K pprox \mathbb{Z}^+ \ ($$
تعریفا) $\Rightarrow H pprox \mathbb{Z}^+ \ ^{\wedge} \mathbb{Z}^+ pprox K \ ($ لأن $pprox \ ^{\wedge}$ متعدیة) $\Rightarrow H pprox K \ ($ لأن \Rightarrow متعدیة)

إجابة السؤال الثاني:

 $\mathbb{Z}_{47}^{*}:(1)$

$$D \subset S$$
 ، حيث $S pprox D$. $C \in S$. $C \in$

إن f غامر لأن:

$$y \in B \Rightarrow \exists \ x=y-2 \in A \ni f(x)=x+2=(y-2)+2=y$$
 کما اُن f متباین ، لاُن :

$$x,y\in A\ni f(x)=f(x)\Rightarrow x+2=y+2\Rightarrow x=y$$
. عبر منتهية $Approx B:$ ومنه تكون A غير منتهية .

: كما أن
$$f$$
 تطبيق غير متباين ، فمثلا

$$f(0)=f(8)=\overline{0} \Rightarrow 0=8$$
 . مما سبق نجد أن f تشاكل غير متباين

إجابة أسئلة الاختبار الفصلى الأول في المقرر131ريض

إجابة السؤال الأول:

$$\sim \left[\forall \ a \in \mathbb{R}: \ a^2 - 2a + 1 \ge 0\right] \equiv \exists \ a \in \mathbb{R} \ni a^2 - 2a + 1 < 0 \quad (1)$$

$$\mathbb{R}^5 = \{(x_1, x_2, x_3, x_4, x_5) : x_i \in \mathbb{R}, \forall i\}$$
 (2)

$$|A| = 4 \ ^{|B|} = 3 \Rightarrow |P(A \times B)| = 2^{12}$$
 (3)

4) نقول إن \hat{R} علاقة ترتيب كلي على مجموعة \hat{S} إذا حققت الشروط الآتية : \hat{R} انعكاسية وتخالفية ومتعدية بالإضافة للشرط الآتى :

$$\forall x, y \in S : xRy \lor yRx$$

: (中)

$$(1,2)\in\mathbb{Z}^2\Rightarrow (1,2)\in\mathbb{Q}^4$$
: عبارة خاطئة ، فمثلا عبارة (1

$$2 = 2\mathbb{Z}^+$$
 عبارة خاطئة لأن 2 عدد أولى و

3) عبارة صائبة لأن:

$$-25 \equiv 3 \pmod{7} \Leftrightarrow -25 - 3 = -28 = (-4) \times 7$$

4) عبارة صائبة لأن:

$$y \in A \Rightarrow yRy$$
 (لأن R انعكاسية $\overline{y} \Rightarrow \overline{y} \neq \emptyset$

إجابة السؤال الثاني:

 $A \cap B = \emptyset \Leftrightarrow$ نقول إن المجموعتين A و B منفصلتان \Leftrightarrow نقول إن المجموعتين A و المجموعتين

(ب) :

A	В	$A \triangle B$	$A \cup B$	$A \cap B$	$A \cup B - A \cap B$
\in	€	∉	€	€	∉
E	∉	E	E	∉	E
∉	\in	€	€	∉	€
∉	∉	∉	∉	∉	∉

من العامودين الثالث والسادس يتم برهان التساوى .

(ج) :

$$S = \{1, 2, 3, 4, 5\}$$
(3)
$$R = \{(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)$$
(4)
$$, (2, 2), (2, 4), (4, 2), (4, 4)\}$$

: از، $aRb \Leftrightarrow \overline{a} = \overline{b}$ ؛ A و $aRb \Leftrightarrow \overline{a} = \overline{b}$

$$b \in \overline{a} \Rightarrow \overline{a} = \overline{b}$$
 : أولا: إثبات أن

$$b \in \overline{a} \Rightarrow bRa \ (\overline{a} \Rightarrow aRb \ (معطى) \Rightarrow \overline{a} = \overline{b}$$
 ستاظرية) $aRb \ (معطى)$

$$\overline{a} = \overline{b} \Rightarrow b \in \overline{a}$$
 : ثانیا : إثبات أن

$$bRb$$
 (نعریف $\overline{a}=\overline{b}$ معطی) $b\in \overline{a}$ معطی) $b\in \overline{a}$ معطی) $b\in \overline{a}$ انعکاسیهٔ)

. $b \in \overline{a} \Leftrightarrow \overline{a} = \overline{b}$: من أولا وثانيا نجد أن