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Finite Automata (1)

® Used to recognize the tokens specified by a regular expression
® Can be converted to an algorithm for matching input strings

® A Finite Automaton (FA) consists of:
» A finite set of states

» A set of transitions (or moves) between states
s The transitions are labeled by characters form the
alphabet

» A special start state

o A set of final or accepting states




Finite Automata (2)

® A finite automaton for letter(letter/digit)* is shown below
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® We may label a transition with more than one character for
convenience

® \We start at the start state

® \We make a transition if next input character matches label on
transition

® |f no move is possible, we stop

® |f we end in an accepting state then

» input sequence of characters is valid

® Otherwise, we do not have a valid sequence




Deterministic Finite Automata

#® Has a unique transition for every state and input character

® Can be represented by a transition table T’
» Table T is indexed by state s and input character ¢

» T'[s]|c| is the next state to visit from state s if the input
character is c

o T can also be described as a transition function

e T:5 x Y — S maps the pair (s,c) to next s




Deterministic Finite Automata

® DFA and transition table for a C comment are show below
» Blank entries in the table represent an error state

o A full transition table will contain one column for each
character (may waste space)

o Characters are combined into character classes when
treated identically in a DFA

State | / | * | other
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Combining DFASs

® In a programming language there are many tokens
® Each token is recognized by its own DFA
® We need to combine DFAs together into one large DFA

» Unite the starting states of various DFAs into one starting
state

o Simple if each token begins with a different character

» Becomes more complex if some tokens have a common
prefix




Combinig DFAs (2)

® Consider the DFAs for <, <=, and <>

» They share a common prefix <

» They are combined into one DFA as shown below

—»O—<>Qi>@return LE
—»Q—<>Q—>>@eturn NE
—»Q—<>@return LT

LE




Algorithmic Aspects of a DFA

°

A DFA diagram is just an outline of a scanning algorithm
A DFA does NOT describe every aspect of the algorithm

What happens when making a transition? A typical action is
to

» Save the character read in a string buffer belonging to a
single token

» The string value is the lexeme of the token

What happens when we reach an accepting state?

o If no further transition is possible, we return the token
recognized

o |If further transitions are possible, we continue to match
the longest string




Algorithmic Aspects of a DFA (2)

#® What happens when no transition exist from an non-accepting
state?

o We can backtrack to the last accepting state, if we visited
one
o The extra characters read, called lookahead characters,
are returned back to input

» We can return an error token if no accepting state is visited
digit digit




Converting a DFA into an Algorithm

® We can convert a DFA into an algorithm by:
» Using a variable, state , to maintain the current state
» Writing transitions as case statements inside a loop
» The first case statement tests the current state

» The nested case statements tests the input character ch

o The unput (ch)  statement returns ch back to input




Converting a DFA into an Algorithm (2)

state = 1; glt
input(ch); 4»@ letter @
vhile not eof do U
case state of etter
l:case ch of
letter:state = 2 input(ch);
else exit wile :
end case ;:
2:case  ch of
letter,digit:input(ch);

el se  unput (ch); exit wle ;
end case ;
end case ;
end vhle ;

i1f state=2 then retun 1d €else error;

—end—if




state = 1

i nput (ch);

while not eof do
case state of
l:case  ch of

"[':state := 2, input(ch);
else exit whle :
end case :

2:case  ch of
'+’ state: =3 | nput (ch) ;
else exit wvhle ;

end case ;
3:case ch of
'x':state =4 | nput (ch);
else state:=3; input(ch);
end case ; other
4:case  ch of
'x':state =4 | nput (ch);
'/’:state =5, exit while ;
else state: =3 i nput (ch);
end case ;
end case ;
end vhle ;

if state=2 then return id, else error;
end if

—
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Table-Driven Generic Algorithm for a DFA (1)

® A DFA can be implemented as a generic algorithm

o Driven by a transition table
® Suitable for scanner generators such as Lex

® Advantages of a generic algorithm:
» Size of code is reduced
» Same code works with different DFAs
» Transition table is only modified

o Code is easier to change and maintain

® Disadvantages:
» Transition table can be very large
» Much of the table space is unused

o Table compression is required




Table-Driven Generic Algorithm for a DFA (2)

state = 1,
| nput (ch);
wiile not eof
next _state := T[state][ch];
if next _state = undefined then
exit while;
end if;
state = next _state;
| nput (ch);
end whle ;
if fina(state) then
unput (ch); - - extra char

return  token;

else if previous fina state
backtrack to previous fina state
return  token;

el se
error;

ed if;




Nondeterministic Finite Automata (NFA) (1)

® An NFA is similar to a DFA except that:

o Multiple transitions labeled by same character from same
state are allowed

® c-transitions are allowed

® c-transitions are spontaneous. They occur without consuming
any character
® An NFA can be converted to an algorithm, except that:

» There can be many transitions that must be tried to match
an input sequence of chars

o Transitions that have not been tried must be stored to
backtrack to them on failure

» Resulting algorithm of NFA is slower than the one that
corresponds to a DFA




Nondeterministic Finite Automata (NFA) (1)

® DFAs with common prefixes can be combined into one large
NFA by:

» uniting their starting states,

s or introducing a new start state and e-transitions

LE

LE




From Regular Expressions to Scanner Function

It is possible to transform regular expressions into a function
First, regular expressions are transformed into NFAs

Second, combined NFAs are converted into one large DFA

© o o 0

Third, the DFA is converted into a scanner function
regular combined one large scanner
expressions NFAs DFA function

® The Thompson's construction transforms regular expressions
into NFA

® The Subset construction is used to transform an NFA into a
DFA




From a Regular Expression to an NFA

® Regular expressions are built out of:
» Basic regular expressions a (where a € ¥J) and &
» Basic operations: concatenation rs, alternation r|s, and

Kleene closure rx

® Regular expression for a and &

~OO OO

#® Thompson's construction of rs, r|s, and 7

NFA for r|s NFA for rs AEQ N Q) CQ NE) ©)
O O) :

(One () 8 ©W® 8

NFA for 7 £




From an NFA to a DFA m Subset Construction (1)

® For any NFA N, we can construct a DFA M equivalent to it
» Each state of M corresponds to a subset of the states of NV
o M will be in state {s1, s2, s3} after reading an input string
iff N can be in s{, s9, or s3
» The initial state of M is the subset of all states that V

could be in initially
o This is the set of states reachable from the initial state

of N following only e-transitions




® o The set of states reachable following only
e-transitions is called the e-closure
s e-closure(state s) = {s} U

{all states reachable from s following only e-transitions }
s Start state of M = e-closure(start state of N)

» Once the start state of M is computed, we

determine the successor states

s Take any state S of M, S corresponds to a
subset of states of N. S = {s1, 59, ...}

s To compute S-successor under character ¢, we
find the successors of {s1, ss,...} under c

s The successors of {si, so,...} under ¢ will be a
new set of states {¢1,¢2,...}

s We compute T' = e-closure({t1,t2,...}) ;
e-closure(set of states T")=U;cre-closure(t)

s T is included in M and a transition from S to
T is labeled with ¢

» We continue adding states and transitions to M
until all possible successors are added

» The process of adding new states to M must
eventually terminate. Why?
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Minimizing the Number of States in a DFA

® The DFA obtained by the subset construction algorithm can
be minimized

® State s can be distinguished from state ¢ in a DFA when for
some string w:

o Starting at state s and reading string w, we end up in an
accepting state

o Starting at state ¢ and reading string w, we end up in a
non-accepting state

® An algorithm that produces a minimum-state DFA is given in
the next slide.
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Construct an initial partition II of the DFA set of
states, S, with 2 groups:

® The set of final states F’
® The set of non-final states S F

For each group G of II:

# Partition GG into subgroups such that 2 states s
and t of GG are in the same subgroup iff:
» VYa € Y, states s and t have transitions on a
to states in the same subgroup of II

#® Call the new partition II,,.,. At worse, each
state will be in a subgroup by itself

If I1,,.., 7 II then go back to step 2 with IT := II,,..,;
otherwise, proceed at step 4

Each group in the final II becomes a state in the
minimized DFA

® The states of a group G of II cannot be
distinguished and are merged into one state

® A transition from group G; to (G5 is marked
with input symbol a when:
o All states of (G; make transition to states in
(G5 on input symbol a
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