Compiler Construction Lexical Analysis

Department of Computer Science King Saud University

Finite Automata (1)

- Used to recognize the tokens specified by a regular expression
- Can be converted to an algorithm for matching input strings
- A Finite Automaton (FA) consists of:
 - A finite set of states
 - A set of transitions (or moves) between states
 - The transitions are labeled by characters form the alphabet
 - A special start state
 - A set of final or accepting states

Finite Automata (2)

A finite automaton for *letter(letter/digit)** is shown below

- We may label a transition with more than one character for convenience
- We start at the start state
- We make a transition if next input character matches label on transition
- If no move is possible, we stop
- If we end in an accepting state then
 - input sequence of characters is valid
- Otherwise, we do not have a valid sequence

Deterministic Finite Automata

- Has a unique transition for every state and input character
- Can be represented by a transition table T
 - Table T is indexed by state s and input character c
 - T[s][c] is the next state to visit from state s if the input character is c
 - T can also be described as a transition function
 - $T: S \times \Sigma \longrightarrow S$ maps the pair (s, c) to $next_s$

Deterministic Finite Automata

- DFA and transition table for a C comment are show below
 - Blank entries in the table represent an error state
 - A full transition table will contain one column for each character (may waste space)
 - Characters are combined into character classes when treated identically in a DFA

Combining DFAs

- In a programming language there are many tokens
- Each token is recognized by its own DFA
- We need to combine DFAs together into one large DFA
 - Unite the starting states of various DFAs into one starting state
 - Simple if each token begins with a different character
 - Becomes more complex if some tokens have a common prefix

Combinig DFAs (2)

- **\checkmark** Consider the DFAs for <, <=, and <>
 - They share a common prefix <
 - They are combined into one DFA as shown below

Algorithmic Aspects of a DFA

- A DFA diagram is just an outline of a scanning algorithm
- A DFA does NOT describe every aspect of the algorithm
- What happens when making a transition? A typical action is to
 - Save the character read in a string buffer belonging to a single token
 - The string value is the lexeme of the token
- What happens when we reach an accepting state?
 - If no further transition is possible, we return the token recognized
 - If further transitions are possible, we continue to match the longest string

Algorithmic Aspects of a DFA (2)

- What happens when no transition exist from an non-accepting state?
 - We can backtrack to the last accepting state, if we visited one
 - The extra characters read, called lookahead characters, are returned back to input

Converting a DFA into an Algorithm

- We can convert a DFA into an algorithm by:
 - Using a variable, state , to maintain the current state
 - Writing transitions as case statements inside a loop
 - The first case statement tests the current state
 - The nested case statements tests the input character ch
 - The unput(ch) statement returns ch back to input

Converting a DFA into an Algorithm (2)

Converting a DFA into an Algorithm (3)

Table-Driven Generic Algorithm for a DFA (1)

- A DFA can be implemented as a generic algorithm
 - Driven by a transition table
- Suitable for scanner generators such as Lex
- Advantages of a generic algorithm:
 - Size of code is reduced
 - Same code works with different DFAs
 - Transition table is only modified
 - Code is easier to change and maintain
- Disadvantages:
 - Transition table can be very large
 - Much of the table space is unused
 - Table compression is required

Table-Driven Generic Algorithm for a DFA (2)

```
state := 1;
input(ch);
while not eof
   next _state := T[state][ch];
   if next_state = undefined then
      exit while;
   end if;
   state := next _state;
   input(ch);
end while ;
if final(state) then
   unput(ch); -- extra char
   return token;
else if previous final state
   backtrack to previous final state
   return token;
else
   error;
```

<u>end</u> if;

Nondeterministic Finite Automata (NFA) (1)

- An NFA is similar to a DFA except that:
 - Multiple transitions labeled by same character from same state are allowed
 - ε -transitions are allowed
- ${}_{\hspace{-.1em}\circ}$ ${}_{\hspace{-.1em}\varepsilon}$ -transitions are spontaneous. They occur without consuming any character
- An NFA can be converted to an algorithm, except that:
 - There can be many transitions that must be tried to match an input sequence of chars
 - Transitions that have not been tried must be stored to backtrack to them on failure
 - Resulting algorithm of NFA is slower than the one that corresponds to a DFA

Nondeterministic Finite Automata (NFA) (1)

- DFAs with common prefixes can be combined into one large NFA by:
 - uniting their starting states,
 - or introducing a new start state and ε -transitions

From Regular Expressions to Scanner Function

- It is possible to transform regular expressions into a function
- First, regular expressions are transformed into NFAs
- Second, combined NFAs are converted into one large DFA
- Third, the DFA is converted into a scanner function

- The Thompson's construction transforms regular expressions into NFA
- The Subset construction is used to transform an NFA into a DFA

From a Regular Expression to an NFA

- Regular expressions are built out of:
 - Basic regular expressions **a** (where $a \in \Sigma$) and ε
 - Basic operations: concatenation rs, alternation r|s, and Kleene closure r*
- Regular expression for **a** and ε

Thompson's construction of rs, r|s, and r*

From an NFA to a DFA Subset Construction (1)

- \checkmark For any NFA N, we can construct a DFA M equivalent to it

 - M will be in state $\{s_1, s_2, s_3\}$ after reading an input string iff N can be in s_1 , s_2 , or s_3
 - The initial state of M is the subset of all states that N could be in initially
 - This is the set of states reachable from the initial state of N following only $\varepsilon\text{-transitions}$

The set of states reachable following only ε -transitions is called the ε -closure • ε -closure(state s) = {s} \cup {all states reachable from s following only ε -transitions} • Start state of $M = \varepsilon$ -closure(start state of N) Once the start state of M is computed, we determine the successor states \checkmark Take any state S of M, S corresponds to a subset of states of *N*. *S* = { $s_1, s_2, ...$ } • To compute S-successor under character c_i , we find the successors of $\{s_1, s_2, ...\}$ under c• The successors of $\{s_1, s_2, ...\}$ under c will be a new set of states $\{t1, t2, ...\}$ • We compute $T = \varepsilon$ -closure($\{t1, t2, ...\}$); ε -closure(set of states T)= $\cup_{t \in T} \varepsilon$ -closure(t) \bullet T is included in M and a transition from S to T is labeled with cWe continue adding states and transitions to Muntil all possible successors are added The process of adding new states to M must

eventually terminate. Why?

Minimizing the Number of States in a DFA

- The DFA obtained by the subset construction algorithm can be minimized
- State s can be distinguished from state t in a DFA when for some string w:
 - Starting at state s and reading string w, we end up in an accepting state
 - Starting at state t and reading string w, we end up in a non-accepting state
- An algorithm that produces a minimum-state DFA is given in the next slide.

the DFA set of
۲ ۱
that 2 states s roup iff: ransitions on a p of Π
At worse, each self
with $\Pi := \Pi_{new}$;
s a state in the
annot be to one state
${\mathbb G}_2$ is marked on to states in

1)

2)

3)

4)