Compiler Construction Lexical Analysis

Department of Computer Science
King Saud University

Finite Automata (1)

- Used to recognize the tokens specified by a regular expression
- Can be converted to an algorithm for matching input strings
- A Finite Automaton (FA) consists of:
- A finite set of states
- A set of transitions (or moves) between states
- The transitions are labeled by characters form the alphabet
- A special start state
- A set of final or accepting states

Finite Automata (2)

- A finite automaton for letter(letter/digit)* is shown below

- We may label a transition with more than one character for convenience
- We start at the start state
- We make a transition if next input character matches label on transition
- If no move is possible, we stop
- If we end in an accepting state then
- input sequence of characters is valid
- Otherwise, we do not have a valid sequence

Deterministic Finite Automata

- Has a unique transition for every state and input character
- Can be represented by a transition table T
- Table T is indexed by state s and input character c
- $T[s][c]$ is the next state to visit from state s if the input character is c
- T can also be described as a transition function
- $T: S \times \Sigma \longrightarrow S$ maps the pair (s, c) to next_s

Deterministic Finite Automata

- DFA and transition table for a C comment are show below
- Blank entries in the table represent an error state
- A full transition table will contain one column for each character (may waste space)
- Characters are combined into character classes when treated identically in a DFA

State	$/$	$*$	other
1	2		
2		3	
3	3	4	3
4	5	4	3
5			

Combining DFAs

- In a programming language there are many tokens
- Each token is recognized by its own DFA
- We need to combine DFAs together into one large DFA
- Unite the starting states of various DFAs into one starting state
- Simple if each token begins with a different character
- Becomes more complex if some tokens have a common prefix

Combinig DFAs (2)

- Consider the DFAs for $<,<=$, and $<>$
- They share a common prefix $<$
- They are combined into one DFA as shown below

Algorithmic Aspects of a DFA

- A DFA diagram is just an outline of a scanning algorithm
- A DFA does NOT describe every aspect of the algorithm
- What happens when making a transition? A typical action is to
- Save the character read in a string buffer belonging to a single token
- The string value is the lexeme of the token
- What happens when we reach an accepting state?
- If no further transition is possible, we return the token recognized
- If further transitions are possible, we continue to match the longest string

Algorithmic Aspects of a DFA (2)

- What happens when no transition exist from an non-accepting state?
- We can backtrack to the last accepting state, if we visited one
- The extra characters read, called lookahead characters, are returned back to input
- We can return an error token if no accepting state is visited

Converting a DFA into an Algorithm

- We can convert a DFA into an algorithm by:
- Using a variable, state , to maintain the current state
- Writing transitions as case statements inside a loop
- The first case statement tests the current state
- The nested case statements tests the input character ch
- The unput (ch) statement returns ch back to input

Converting a DFA into an Algorithm (2)

state $:=1$;
input (ch);
while not eof do
case state of
1:case ch of
'/':state $:=2$; input (ch);
else exit while;

end case;

2: case ch of
' *' : state: $=3$; input (ch); else exit while; end case;

3:case ch of
' *' : state: $=4$; input (ch) ;
else state:=3; input (ch); end case;

4: case ch of
' *' : state: $=4$; input (ch) ;
'/':state $\quad:=5$; exit while;
else state:=3; input (ch); end case;
end case;
end while;
if state =2 then return id; else error; end if

Table-Driven Generic Algorithm for a DFA (1)

- A DFA can be implemented as a generic algorithm
- Driven by a transition table
- Suitable for scanner generators such as Lex
- Advantages of a generic algorithm:
- Size of code is reduced
- Same code works with different DFAs
- Transition table is only modified
- Code is easier to change and maintain
- Disadvantages:
- Transition table can be very large
- Much of the table space is unused
- Table compression is required

Table-Driven Generic Algorithm for a DFA (2)

```
state := 1;
input (ch);
while not eof
    next _state := T[state][ch];
    if next _state = undefined then
        exit while;
    end if;
    state := next _state;
    input (ch);
end while;
if final(state) then
    unput (ch); -- extra char
    return token;
else if previous final state
    backtrack to previous final state
    return token;
else
    error;
end if;
```


Nondeterministic Finite Automata (NFA) (1)

- An NFA is similar to a DFA except that:
- Multiple transitions labeled by same character from same state are allowed
- ε-transitions are allowed
- ε-transitions are spontaneous. They occur without consuming any character
- An NFA can be converted to an algorithm, except that:
- There can be many transitions that must be tried to match an input sequence of chars
- Transitions that have not been tried must be stored to backtrack to them on failure
- Resulting algorithm of NFA is slower than the one that corresponds to a DFA

Nondeterministic Finite Automata (NFA) (1)

- DFAs with common prefixes can be combined into one large NFA by:
- uniting their starting states,
- or introducing a new start state and ε-transitions

From Regular Expressions to Scanner Function

- It is possible to transform regular expressions into a function
- First, regular expressions are transformed into NFAs
- Second, combined NFAs are converted into one large DFA
- Third, the DFA is converted into a scanner function

- The Thompson's construction transforms regular expressions into NFA
- The Subset construction is used to transform an NFA into a DFA

From a Regular Expression to an NFA

- Regular expressions are built out of:
- Basic regular expressions a (where $a \in \Sigma$) and ε
- Basic operations: concatenation $r s$, alternation $r \mid s$, and Kleene closure $r *$
- Regular expression for a and ε

- Thompson's construction of $r s, r \mid s$, and $r *$

NFA for $r \mid s$

NFA for $r s$

From an NFA to a DFA ■ Subset Construction (1)

- For any NFA N, we can construct a DFA M equivalent to it
- Each state of M corresponds to a subset of the states of N
- M will be in state $\left\{s_{1}, s_{2}, s_{3}\right\}$ after reading an input string iff N can be in s_{1}, s_{2}, or s_{3}
- The initial state of M is the subset of all states that N could be in initially
- This is the set of states reachable from the initial state of N following only ε-transitions

The set of states reachable following only ε-transitions is called the ε-closure - ε-closure $($ state $s)=\{s\} \cup$ \{all states reachable from s following only ε-transitions $\}$ - Start state of $M=\varepsilon$-closure(start state of N) Once the start state of M is computed, we determine the successor states

- Take any state S of M, S corresponds to a subset of states of $N . S=\left\{s_{1}, s_{2}, \ldots\right\}$
- To compute S-successor under character c, we find the successors of $\left\{s_{1}, s_{2}, \ldots\right\}$ under c
- The successors of $\left\{s_{1}, s_{2}, \ldots\right\}$ under c will be a new set of states $\{t 1, t 2, \ldots\}$
- We compute $T=\varepsilon$-closure $(\{t 1, t 2, \ldots\})$;
ε-closure(set of states T) $=\cup_{t \in T} \varepsilon$-closure (t)
- T is included in M and a transition from S to T is labeled with c
We continue adding states and transitions to M until all possible successors are added
The process of adding new states to M must eventually terminate. Why?

Minimizing the Number of States in a DFA

- The DFA obtained by the subset construction algorithm can be minimized
- State s can be distinguished from state t in a DFA when for some string w :
- Starting at state s and reading string w, we end up in an accepting state
- Starting at state t and reading string w, we end up in a non-accepting state
- An algorithm that produces a minimum-state DFA is given in the next slide.

1) \rightarrow Construct an initial partition Π of the DFA set of states, S, with 2 groups:

- The set of final states F

- The set of non-final states $S F$

2) \rightarrow For each group G of Π :

- Partition G into subgroups such that 2 states s and t of G are in the same subgroup iff:
- $\forall a \in \Sigma$, states s and t have transitions on a to states in the same subgroup of Π
- Call the new partition $\Pi_{\text {new }}$. At worse, each state will be in a subgroup by itself
$3) \rightarrow$ If $\Pi_{\text {new }} \neq \Pi$ then go back to step 2 with $\Pi:=\Pi_{\text {new }}$; otherwise, proceed at step 4
$4) \rightarrow$ Each group in the final Π becomes a state in the minimized DFA
- The states of a group G of Π cannot be distinguished and are merged into one state
- A transition from group G_{1} to G_{2} is marked with input symbol a when:
- All states of G_{1} make transition to states in G_{2} on input symbol a

