Compiler Construction
Lexical Analysis

Department of Computer Science

King Saud University

Finite Automata (1)

® Used to recognize the tokens specified by a regular expression
® Can be converted to an algorithm for matching input strings

® A Finite Automaton (FA) consists of:
» A finite set of states

» A set of transitions (or moves) between states
s The transitions are labeled by characters form the
alphabet

» A special start state

o A set of final or accepting states

Finite Automata (2)

® A finite automaton for letter(letter/digit)* is shown below

BOaER0

® We may label a transition with more than one character for
convenience

® \We start at the start state

® \We make a transition if next input character matches label on
transition

® |f no move is possible, we stop

® |f we end in an accepting state then

» input sequence of characters is valid

® Otherwise, we do not have a valid sequence

Deterministic Finite Automata

#® Has a unique transition for every state and input character

® Can be represented by a transition table T’
» Table T is indexed by state s and input character ¢

» T'[s]|c| is the next state to visit from state s if the input
character is c

o T can also be described as a transition function

e T:5 x Y — S maps the pair (s,c) to next s

Deterministic Finite Automata

® DFA and transition table for a C comment are show below
» Blank entries in the table represent an error state

o A full transition table will contain one column for each
character (may waste space)

o Characters are combined into character classes when
treated identically in a DFA

State | / | * | other

O & W N
o1

Combining DFASs

® In a programming language there are many tokens
® Each token is recognized by its own DFA
® We need to combine DFAs together into one large DFA

» Unite the starting states of various DFAs into one starting
state

o Simple if each token begins with a different character

» Becomes more complex if some tokens have a common
prefix

Combinig DFAs (2)

® Consider the DFAs for <, <=, and <>

» They share a common prefix <

» They are combined into one DFA as shown below

—»O—<>Qi>@return LE
—»Q—<>Q—>>@eturn NE
—»Q—<>@return LT

LE

Algorithmic Aspects of a DFA

°

A DFA diagram is just an outline of a scanning algorithm
A DFA does NOT describe every aspect of the algorithm

What happens when making a transition? A typical action is
to

» Save the character read in a string buffer belonging to a
single token

» The string value is the lexeme of the token

What happens when we reach an accepting state?

o If no further transition is possible, we return the token
recognized

o |If further transitions are possible, we continue to match
the longest string

Algorithmic Aspects of a DFA (2)

#® What happens when no transition exist from an non-accepting
state?

o We can backtrack to the last accepting state, if we visited
one
o The extra characters read, called lookahead characters,
are returned back to input

» We can return an error token if no accepting state is visited
digit digit

Converting a DFA into an Algorithm

® We can convert a DFA into an algorithm by:
» Using a variable, state , to maintain the current state
» Writing transitions as case statements inside a loop
» The first case statement tests the current state

» The nested case statements tests the input character ch

o The unput (ch) statement returns ch back to input

Converting a DFA into an Algorithm (2)

state = 1; glt
input(ch); 4»@ letter @
vhile not eof do U
case state of etter
l:case ch of
letter:state = 2 input(ch);
else exit wile :
end case ;:
2:case ch of
letter,digit:input(ch);

el se unput (ch); exit wle ;
end case ;
end case ;
end vhle ;

i1f state=2 then retun 1d €else error;

—end—if

state = 1

i nput (ch);

while not eof do
case state of
l:case ch of

"[':state := 2, input(ch);
else exit whle :
end case :

2:case ch of
'+’ state: =3 | nput (ch) ;
else exit wvhle ;

end case ;
3:case ch of
'x':state =4 | nput (ch);
else state:=3; input(ch);
end case ; other
4:case ch of
'x':state =4 | nput (ch);
'/’:state =5, exit while ;
else state: =3 i nput (ch);
end case ;
end case ;
end vhle ;

if state=2 then return id, else error;
end if

—

(€) wyriob |y ue olul wy4@ e bunisauo)d

Table-Driven Generic Algorithm for a DFA (1)

® A DFA can be implemented as a generic algorithm

o Driven by a transition table
® Suitable for scanner generators such as Lex

® Advantages of a generic algorithm:
» Size of code is reduced
» Same code works with different DFAs
» Transition table is only modified

o Code is easier to change and maintain

® Disadvantages:
» Transition table can be very large
» Much of the table space is unused

o Table compression is required

Table-Driven Generic Algorithm for a DFA (2)

state = 1,
| nput (ch);
wiile not eof
next _state := T[state][ch];
if next _state = undefined then
exit while;
end if;
state = next _state;
| nput (ch);
end whle ;
if fina(state) then
unput (ch); - - extra char

return token;

else if previous fina state
backtrack to previous fina state
return token;

el se
error;

ed if;

Nondeterministic Finite Automata (NFA) (1)

® An NFA is similar to a DFA except that:

o Multiple transitions labeled by same character from same
state are allowed

® c-transitions are allowed

® c-transitions are spontaneous. They occur without consuming
any character
® An NFA can be converted to an algorithm, except that:

» There can be many transitions that must be tried to match
an input sequence of chars

o Transitions that have not been tried must be stored to
backtrack to them on failure

» Resulting algorithm of NFA is slower than the one that
corresponds to a DFA

Nondeterministic Finite Automata (NFA) (1)

® DFAs with common prefixes can be combined into one large
NFA by:

» uniting their starting states,

s or introducing a new start state and e-transitions

LE

LE

From Regular Expressions to Scanner Function

It is possible to transform regular expressions into a function
First, regular expressions are transformed into NFAs

Second, combined NFAs are converted into one large DFA

© o o 0

Third, the DFA is converted into a scanner function
regular combined one large scanner
expressions NFAs DFA function

® The Thompson's construction transforms regular expressions
into NFA

® The Subset construction is used to transform an NFA into a
DFA

From a Regular Expression to an NFA

® Regular expressions are built out of:
» Basic regular expressions a (where a € ¥J) and &
» Basic operations: concatenation rs, alternation r|s, and

Kleene closure rx

® Regular expression for a and &

~OO OO

#® Thompson's construction of rs, r|s, and 7

NFA for r|s NFA for rs AEQ N Q) CQ NE) ©)
O O) :

(One () 8 ©W® 8

NFA for 7 £

From an NFA to a DFA m Subset Construction (1)

® For any NFA N, we can construct a DFA M equivalent to it
» Each state of M corresponds to a subset of the states of NV
o M will be in state {s1, s2, s3} after reading an input string
iff N can be in s{, s9, or s3
» The initial state of M is the subset of all states that V

could be in initially
o This is the set of states reachable from the initial state

of N following only e-transitions

® o The set of states reachable following only
e-transitions is called the e-closure
s e-closure(state s) = {s} U

{all states reachable from s following only e-transitions }
s Start state of M = e-closure(start state of N)

» Once the start state of M is computed, we

determine the successor states

s Take any state S of M, S corresponds to a
subset of states of N. S = {s1, 59, ...}

s To compute S-successor under character ¢, we
find the successors of {s1, ss,...} under c

s The successors of {si, so,...} under ¢ will be a
new set of states {¢1,¢2,...}

s We compute T' = e-closure({t1,t2,...}) ;
e-closure(set of states T")=U;cre-closure(t)

s T is included in M and a transition from S to
T is labeled with ¢

» We continue adding states and transitions to M
until all possible successors are added

» The process of adding new states to M must
eventually terminate. Why?

(2) uononNIISuU0) 1BsSqNS ® Y4 e 01 Y4N ue woi4

Minimizing the Number of States in a DFA

® The DFA obtained by the subset construction algorithm can
be minimized

® State s can be distinguished from state ¢ in a DFA when for
some string w:

o Starting at state s and reading string w, we end up in an
accepting state

o Starting at state ¢ and reading string w, we end up in a
non-accepting state

® An algorithm that produces a minimum-state DFA is given in
the next slide.

2)—

3)—

Construct an initial partition II of the DFA set of
states, S, with 2 groups:

® The set of final states F’
® The set of non-final states S F

For each group G of II:

Partition GG into subgroups such that 2 states s
and t of GG are in the same subgroup iff:
» VYa € Y, states s and t have transitions on a
to states in the same subgroup of II

#® Call the new partition II,,.,. At worse, each
state will be in a subgroup by itself

If I1,,.., 7 II then go back to step 2 with IT := II,,..,;
otherwise, proceed at step 4

Each group in the final II becomes a state in the
minimized DFA

® The states of a group G of II cannot be
distinguished and are merged into one state

® A transition from group G; to (G5 is marked
with input symbol a when:
o All states of (G; make transition to states in
(G5 on input symbol a

wyiiob|y w4 e ul sayels Jo JjaquinN ayl Buiziwiuin

	small Finite Automata (1)
	small Finite Automata (2)
	small Deterministic Finite Automata
	small Deterministic Finite Automata
	small Combining DFAs
	small Combinig DFAs (2)
	small Algorithmic Aspects of a DFA
	small Algorithmic Aspects of a DFA (2)
	small Converting a DFA into an Algorithm
	small Converting a DFA into an Algorithm (2)
	small Converting a DFA into an Algorithm (3)
	small Table-Driven Generic Algorithm for a DFA (1)
	small Table-Driven Generic Algorithm for a DFA (2)
	small Nondeterministic Finite Automata (NFA)
(1)
	small Nondeterministic Finite Automata (NFA)
(1)
	small From Regular Expressions to Scanner Function
	small From a Regular Expression to an NFA
	small From an NFA to a DFA � Subset Construction (1)
	small From an NFA to a DFA � Subset Construction (2)
	small Minimizing the Number of States in a DFA
	small Minimizing the Number of States in a DFA: Algorithm

