
Lexical Analysis

 It is the first phase of compiler

 Its main task is to read the input characters
and produce as output a sequence of tokens
that the parser uses for syntax analysis

 Reasons to make it a separate phase are:
◦ Simplifies the design of the compiler
◦ Provides efficient implementation(read the source

code)
◦ Improves portability

3

Lexical
Analyzer

Parser
Source

Program

Token,
tokenval

Symbol Table

Get next
token

error error

 A token is a classification of lexical units
◦ For example: id and num

 Lexemes are the specific character strings
that make up a token
◦ For example: abc and 123

 Patterns are rules describing the set of
lexemes belonging to a token
◦ For example: “letter followed by letters and

digits” and “non-empty sequence of digits”

4

Token Lexeme Pattern

if if if

relation <, <=,=,<>,>,>= < or <= or = or <>
or > or >=

id y, x Letter followed by
letters and digits

num 31 , 28 Any numeric constant

operator + , *, - ,/ Any arithmetic
operator
+ or * or – or /

6

Lexical analyzer

<id, “y”> <assign, :=> <num, 31> <operator , +> <num, 28> <operator, *> <

y := 31 + 28*x

Parser

token

tokenval

(token attribute)

 Alphabet: Finite, nonempty set of symbols

Example:

Example:

 Strings: Finite sequence of symbols from an
alphabet e.g. 0011001

 Empty String: The string with zero
occurrences of symbols from alphabet. The
empty string is denoted by

 Length of String: Number of positions for
symbols in the string. |w| denotes the length
of string w

Example |0110| = 4; | | = 0

 Powers of an Alphabet: = the set of strings
of length k with symbols from

Example:

 The set of all strings over is denoted

 Language: is a specific set of strings over
some fixed alphabet

Example:
The set of legal English words

The set of strings consisting of n 0's followed by n
1’s

LP = the set of binary numbers whose value is
prime

 The concatenation of two strings x and y is
denoted by xy

 The exponentiation of a string s is defined by

s0 =
si = si-1s for i > 0

note that s = s = s

 Union
L M = {s s L or s M}

 Concatenation
LM = {xy x L and y M}

 Exponentiation
L0 = {}; Li = Li-1L

 Kleene closure
L* = i=0,…, Li

 Positive closure
L+ = i=1,…, Li

 Basis symbols:
◦ is a regular expression denoting language {}
◦ a is a regular expression denoting {a}

 If r and s are regular expressions denoting
languages L(r) and M(s) respectively, then
◦ rs is a regular expression denoting L(r) M(s)
◦ rs is a regular expression denoting L(r)M(s)
◦ r* is a regular expression denoting L(r)*

◦ (r) is a regular expression denoting L(r)
 A language defined by a regular expression

is called a Regular set or a Regular
Language

13

 Regular definitions introduce a naming
convention:

d1 r1

d2 r2

…

dn rn

where each ri is a regular expression over

 {d1, d2, …, di-1 }

14

 Example:

letter AB…Zab…z
digit 01…9

id letter (letterdigit)*

 The following shorthands are often used:

r+ = rr*

r? = r
[a-z] = abc…z

 Examples:
digit [0-9]
num digit+ (. digit+)? (E (+-)? digit+)?

16

stmt if expr then stmt

 if expr then stmt else stmt

expr term relop term

 term
term id

 num if if

then then

else else

relop < <= <> > >= =

id letter (letter | digit)*

num digit+ (. digit+)? (E (+-)? digit+)?

Grammar

Regular definitions

17

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11
*other

letter or digit

return(gettoken(),
install_id())

relop <<=<>>>==

id letter (letterdigit)*

 Finite Automata are used as a model for:

◦ Software for designing digital circuits

◦ Lexical analyzer of a compiler

◦ Searching for keywords in a file or on the web.

◦ Software for verifying finite state systems, such as
communication protocols.

 Translate regular expressions to NFA

 Translate NFA to an efficient DFA

19

regular
expressions

NFA DFA

Simulate NFA
to recognize

tokens

Simulate DFA
to recognize

tokens

 An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states
 is a finite set of symbols, the alphabet
 is a mapping from S to a set of states
s0 S is the start state
F S is the set of accepting (or final) states

20

 An NFA can be diagrammatically represented
by a labeled directed graph called a transition
graph

21

0
start a 1 32b b

a

b

S = {0,1,2,3}
 = {a,b}
s0 = 0
F = {3}

 The mapping of an NFA can be represented
in a transition table

22

State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}
(0,b) = {0}
(1,b) = {2}
(2,b) = {3}

 An NFA accepts an input string x if and only
if there is some path with edges labeled
with symbols from x in sequence from the
start state to some accepting state in the
transition graph

 A state transition from one state to another
on the path is called a move

 The language defined by an NFA is the set
of input strings it accepts, such as
(ab)*abb for the example NFA

23

24

N(r2)N(r1)

fi

fai

fi
N(r1)

N(r2)

start

start

start

fi
start

N(r) fi
start

a

r1r2

r1r2

r*

25

2a1
start

6
a3

start
4 5b b

8
b

7
start

a b

a { action1 }
abb { action2 }
a*b+ { action3 }

2a1

6
a3 4 5b b

8
b

7

a b

0
start

 A deterministic finite automaton is a special
case of an NFA
◦ No state has an -transition

◦ For each state s and input symbol a there is at
most one edge labeled a leaving s

 Each entry in the transition table is a single
state
◦ At most one path exists to accept a string

◦ Simulation algorithm is simple

26

27

0
start a 1 32b b

b
b

a

a

a

A DFA that accepts (ab)*abb

 The subset construction algorithm converts
an NFA into a DFA using:

-closure(s) = {s} {t s … t}
-closure(T) = sT -closure(s)
move(T,a) = {t s a t and s T}

 The algorithm produces:
Dstates is the set of states of the new DFA
consisting of sets of states of the NFA
Dtran is the transition table of the new DFA

28

29

30

31

2a1

6
a3 4 5b b

8
b

7

a b

0
start

-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}
-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}
-closure({7}) = {7}
move({7},b) = {8}
-closure({8}) = {8}
move({8},a) =

0

1

3

7

2

4

7

7 8

a ba a none

Also used to simulate NFAs

32

0
start a1 10

2

b

b

a

b

3

4 5

6 7 8 9

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

Dstates
A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}

a

33

2a1

6
a3 4 5b b

8
b

7

a b

0
start

a1

a2

a3

Dstates
A = {0,1,3,7}
B = {2,4,7}
C = {8}
D = {7}
E = {5,8}
F = {6,8}

A
start

a

D

b

b

b

a
b

bB

C

E F

a

b

a1

a3

a3 a2 a3

