Lecture \# 5
 Lexical Analysis

Role of Lexical Analyzer

- It is the first phase of compiler
- Its main task is to read the input characters and produce as output a sequence of tokens that the parser uses for syntax analysis
- Reasons to make it a separate phase are:
- Simplifies the design of the compiler
- Provides efficient implementation(read the source code)
- Improves portability

Interaction of the Lexical Analyzer with the Parser

Tokens, Patterns, and Lexemes

- A token is a classification of lexical units
- For example: id and num
- Lexemes are the specific character strings that make up a token
- For example: abc and 123
- Patterns are rules describing the set of lexemes belonging to a token
- For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Diff b/w Token, Lexeme and Pattern

Token	Lexeme	Pattern
if	if	if
relation	$<,<=,=,<>,>,>=$	$<$ or $<=$ or $=$ or $<>$ or $>$ or $>=$
id	y, x	Letter followed by letters and digits
num	31,28	Any numeric constant
operator	$+,,^{*},-, /$	Any arithmetic operator + or * or - or /

Attributes of Tokens

$$
y:=31+28 * x
$$

<id, "y"> <assign, :=> <num, $31><$ operator,$+><$ num, 28><operator, *>

Specification of Tokens

- Alphabet: Finite, nonempty set of symbols

Example: $\Sigma=\{0,1\}$ binary alphabet
Example: $\Sigma=\{a, b, c, \ldots, z\}$ the set of all lower case letters

- Strings: Finite sequence of symbols from an alphabet e.g. 0011001
- Empty String: The string with zero occurrences of symbols from alphabet. The empty string is denoted by ϵ

Continue...

- Length of String: Number of positions for symbols in the string. $|\mathrm{w}|$ denotes the length of string w
Example $|0110|=4 ;|\epsilon|=0$
- Powers of an Alphabet: $\Sigma^{k}=$ the set of strings of length k with symbols from Σ
Example:

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& \Sigma^{1}=\{0,1\} \\
& \Sigma^{2}=\{00,01,10,11\} \\
& \Sigma^{0}=\{\epsilon\}
\end{aligned}
$$

Continue..

- The set of all strings over Σ is denoted Σ^{*}

$$
\begin{aligned}
& \Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \cdots \\
& \Sigma^{+}=\Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \cdots \\
& \Sigma^{*}=\Sigma^{+} \cup\{\epsilon\}
\end{aligned}
$$

Continue..

- Language: is a specific set of strings over some fixed alphabet Σ
Example:
The set of legal English words
The set of strings consisting of $n 0$'s followed by n
1's
LP = the set of binarv numbers whose value is $\operatorname{prim} \epsilon\{\epsilon, 01,0011,000111, \ldots\}$

$$
\{10,11,101,111,1011, \ldots\}
$$

Concatenation and Exponentiation

- The concatenation of two strings x and y is denoted by $x y$
- The exponentiation of a string s is defined by

$$
\begin{aligned}
& s^{0}=\varepsilon \\
& s^{j}=s^{i-1} s \text { for } i>0
\end{aligned}
$$

note that $s \varepsilon=\varepsilon s=s$

Language Operations

- Union

$$
L \cup M=\{s \mid s \in L \text { or } s \in M\}
$$

- Concatenation

$$
\mathrm{LM}=\{x y \mid x \in L \text { and } y \in M\}
$$

- Exponentiation

$$
\mathrm{L}^{0}=\{\varepsilon\} ; \quad \mathrm{L}^{\mathrm{i}}=\mathrm{L}^{\mathrm{i}-1} \mathrm{~L}
$$

- Kleene closure

$$
\mathrm{L}^{*}=\cup_{\mathrm{i}=0, \ldots, \infty} \mathrm{~L}^{\mathrm{i}}
$$

- Positive closure

$$
\mathrm{L}^{+}=\cup_{\mathrm{i}=1, \ldots, \infty} \mathrm{~L}^{\mathrm{i}}
$$

Regular Expressions

- Basis symbols:
$\circ \varepsilon$ is a regular expression denoting language $\{\varepsilon\}$
- $a \in \Sigma$ is a regular expression denoting $\{a\}$
- If r and s are regular expressions denoting
languages $L(r)$ and $M(s)$ respectively, then
$\circ r s$ is a regular expression denoting $L(r) \cup M(s)$
- $r s$ is a regular expression denoting $L(r) M(s)$
$\circ r^{*}$ is a regular expression denoting $L(r)^{*}$
$\circ(r)$ is a regular expression denoting $L(r)$
- A language defined by a regular expression is called a Regular set or a Regular
Language

Regular Definitions

- Regular definitions introduce a naming convention:

$$
\begin{aligned}
& d_{1} \rightarrow r_{1} \\
& d_{2} \rightarrow r_{2}
\end{aligned}
$$

$$
d_{n} \rightarrow r_{n}
$$

where each r_{i} is a regular expression over

$$
\Sigma \cup\left\{d_{1}, d_{2}, \ldots, d_{i-1}\right\}
$$

- Example:

$$
\begin{aligned}
\text { letter } & \rightarrow \mathbf{A}|\mathbf{B}| \ldots|\mathbf{Z}| \mathbf{a}|\mathrm{b}| \ldots \mid \mathbf{z} \\
\text { digit } & \rightarrow 0|1| \ldots \mid 9 \\
\text { id } & \rightarrow \text { letter }(\text { letter } \mid \text { digit })^{*}
\end{aligned}
$$

- The following shorthands are often used:

$$
\begin{aligned}
r^{+} & =r r^{*} \\
r & =r \mid \varepsilon \\
{[\mathbf{a}-\mathbf{z}] } & =\mathbf{a}|\mathbf{b}| \mathbf{c}|\ldots| \mathbf{z}
\end{aligned}
$$

- Examples: digit \rightarrow [0-9] num \rightarrow digit $^{+}\left(\right.$. digit $\left.^{+}\right)$? $\left(E(+\mid-)\right.$? digit $\left.{ }^{+}\right)$?

Regular Definitions and Grammars

```
Grammar
stmt \(\rightarrow\) if expr then stmt
if expr then stmt else stmt
\(\varepsilon\)
expr \(\rightarrow\) term relop term
term
term \(\rightarrow\) id
num
Regular definitions
```

```
\[
\begin{aligned}
& \text { if } \rightarrow \text { if } \\
& \text { then } \rightarrow \text { then } \\
& \text { else } \rightarrow \text { else } \\
& \text { relop } \rightarrow<|<=|<>|>|>=|= \\
& \text { id } \rightarrow \text { letter ( letter | digit ) } \\
& \text { num } \left.\left.\rightarrow \text { digit }^{+} \text {(. digit }{ }^{+}\right) \text {? ( } \mathrm{E}(+\mid-) \text { ? digit }{ }^{+}\right) \text {? }
\end{aligned}
\]
```


Coding Regular Definitions in Transition Diagrams

id \rightarrow letter (letter \mid digit)
letter or digit
$\xrightarrow{\text { start }} 9$ letter \rightarrow other (1) * return(gettoken), instal/_id() \}

Finite Automata

- Finite Automata are used as a model for:
- Software for designing digital circuits
- Lexical analyzer of a compiler
- Searching for keywords in a file or on the web.
- Software for verifying finite state systems, such as communication protocols.

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA - Translate NFA to an efficient DFA

Nondeterministic Finite Automata

- An NFA is a 5 -tuple ($S, \Sigma, \delta, s_{0}, F$) where
S is a finite set of states
Σ is a finite set of symbols, the alphabet δ is a mapping from $S \times \Sigma$ to a set of states $s_{0} \in S$ is the start state
$F \subseteq S$ is the set of accepting (or final) states

Transition Graph

- An NFA can be diagrammatically represented by a labeled directed graph called a transition graph

Transition Table

The mapping δ of an NFA can be represented in a transition table
$\delta(0, a)=\{0,1\}$ $\delta(0, \mathrm{~b})=\{0\}$ $\delta(1, \mathrm{~b})=\{2\}$ $\delta(2, \mathrm{~b})=\{3\}$

State	Input \mathbf{a}	Input \mathbf{b}
0	$\{0,1\}$	$\{0\}$
1		$\{2\}$
2		$\{3\}$

The Language Defined by an NFA

- An NFA accepts an input string x if and only if there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a move
- The language defined by an NFA is the set of input strings it accepts, such as ($a \mid b$)*abb for the example NFA

From Regular Expression to $\varepsilon-$ NFA (Thompson's Construction)

Combining the NFAs of a Set of Regular Expressions

$\begin{array}{ll}\mathrm{a} & \left\{\text { action }_{1}\right\} \\ \mathrm{abb} & \left\{\text { action }_{2}\right\} \\ \mathrm{a} * \mathrm{~b}+ & \left\{\text { action }_{3}\right\}\end{array}$

Deterministic Finite Automata

- A deterministic finite automaton is a special case of an NFA
- No state has an ε-transition
- For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
- At most one path exists to accept a string
- Simulation algorithm is simple

Example DFA

A DFA that accepts $(a \mid b) * a b b$

Conversion of an NFA into a DFA

The subset construction algorithm converts an NFA into a DFA using:

$$
\begin{aligned}
& \varepsilon-\operatorname{closure}(s)=\{s\} \cup\left\{t \mid s \rightarrow_{\varepsilon} \ldots \rightarrow_{\varepsilon} t\right\} \\
& \varepsilon-\operatorname{closure}(T)=\cup_{s \in T^{\varepsilon}-\operatorname{closure}(s)} \\
& \operatorname{move}(T, a)=\left\{t \mid \stackrel{s}{ }\left(\rightarrow_{a} t \text { and } s \in T\right\}\right.
\end{aligned}
$$

The algorithm produces:
Dstates is the set of states of the new DFA consisting of sets of states of the NFA Dtran is the transition table of the new DFA

ebooksclub．org＿Compiler＿Construc．．．区
Thus，this algorithm is called the subset construction．We first discuss the ε－closure in a little more detail and then proceed to a description of the subset construction．

The $\boldsymbol{\varepsilon}$－Closure of a Set of States We define the $\boldsymbol{\varepsilon}$－closure of a single state s as the set of states reachable by a series of zero or more ε－transitions，and we write this set as \bar{s} ．We leave a more mathematical statement of this definition to an exercise and proceed directly to an example．Note，however，that the ε－closure of a state always contains the state itself．
mple 2．14 Consider the following NFA corresponding to the regular expression a＊under Thompson＇s construction：

In this NFA，we have $\overline{1}=\{1,2,4\}, \overline{2}=\{2\}, \overline{3}=\{2,3,4\}$ ，and $\overline{4}=\{4\}$ ．

Page 77 of $590 \quad 6.87 \times 9.59$ in
mple 2.17 Consider the NFA of Figure 2.9 (Thompson's construction for the regular expression letter(letter|digit)*):

The subset construction proceeds as follows. The start state is $\overline{\{1\}}=\{1\}$. There is a transition on 1etter to $\overline{\{2\}}=\{2,3,4,5,7,10\}$. From this state there is a transition on letter to $\overline{\{6\}}=\{4,5,6,7,9,10\}$ and a transition on digit to $\overline{\{8\}}=$ $\{4,5,7,8,9,10\}$. Finally, each of these states also has transitions on letter and digit, either to itself or to the other. The complete DFA is given in the following picture:

ε-closure and move Examples

$$
\varepsilon \text {-closure(}\{0\})=\{0,1,3,7\}
$$ move $(\{0,1,3,7\}, a)=\{2,4,7\}$ ε-closure $(\{2,4,7\})=\{2,4,7\}$ $\operatorname{move}(\{2,4,7\}, \mathrm{a})=\{7\}$

ε-closure $(\{7\})=\{7\}$ $\operatorname{move}(\{7\}, \mathrm{b})=\{8\}$
ε-closure $(\{8\})=\{8\}$
$\operatorname{move}(\{8\}, \mathrm{a})=\varnothing$

Subset Construction Example 1

$$
\begin{aligned}
& \text { Dstates } \\
& \mathrm{A}=\{0,1,2,4,7\} \\
& \mathrm{B}=\{1,2,3,4,6,7,8\} \\
& \mathrm{C}=\{1,2,4,5,6,7\} \\
& \mathrm{D}=\{1,2,4,5,6,7,9\} \\
& \mathrm{E}=\{1,2,4,5,6,7,10\}
\end{aligned}
$$

Subset Construction Example 2

Dstates
$\mathrm{A}=\{0,1,3,7\}$
$\mathrm{B}=\{2,4,7\}$
$C=\{8\}$
$\mathrm{D}=\{7\}$
$\mathrm{E}=\{5,8\}$
$\mathrm{F}=\{6,8\}$

