Lexical Analysis

Role of Lexical Analyzer

- It is the first phase of compiler
- Its main task is to read the input characters and produce as output a sequence of tokens that the parser uses for syntax analysis
- Reasons to make it a separate phase are:
 - Simplifies the design of the compiler
 - Provides efficient implementation(read the source code)
 - Improves portability

Interaction of the Lexical Analyzer with the Parser

Tokens, Patterns, and Lexemes

- A *token* is a classification of lexical units
 For example: id and num
- Lexemes are the specific character strings that make up a token
 - For example: **abc** and **123**
- Patterns are rules describing the set of lexemes belonging to a token
 - For example: "*letter followed by letters and digits*" and "*non-empty sequence of digits*"

Diff b/w Token, Lexeme and Pattern

Token	Lexeme	Pattern	
if	if	if	
relation	<, <=,=,<>,>,>=	< or <= or = or <> or > or >=	
id	y, x	Letter followed by letters and digits	
num	31,28	Any numeric constant	
operator	+ , *, - ,/	Any arithmetic operator + or * or - or /	

Specification of Tokens

- <u>Alphabet</u>: Finite, nonempty set of symbols Example: $\Sigma = \{0, 1\}$ binary alphabet Example: $\Sigma = \{a, b, c, ..., z\}$ the set of all lower case letters
- Strings: Finite sequence of symbols from an alphabet e.g. 0011001
- Empty String: The string with zero occurrences of symbols from alphabet. The empty string is denoted by e

Continue...

 Length of String: Number of positions for symbols in the string. |w| denotes the length of string w

Example |0110| = 4; $|\epsilon| = 0$

 <u>Powers of an Alphabet</u>: Σ^k = the set of strings of length k with symbols from Σ
 Example:

$$\Sigma = \{0, 1\}$$

 $\Sigma^1 = \{0, 1\}$

 $\Sigma^2 = \{00, 01, 10, 11\}$

 $\Sigma^0 = \{\epsilon\}$

Continue..

• The set of all strings over Σ is denoted Σ^*

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$$
$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$$
$$\Sigma^* = \Sigma^+ \cup \{\epsilon\}$$

Continue..

- <u>Language</u>: is a specific set of strings over some fixed alphabet Σ
 - Example:
 - The set of legal English words
 - The set of strings consisting of n 0's followed by n 1's
 - LP = the set of binarv numbers whose value is prime $\{\epsilon, 01, 0011, 000111, \ldots\}$

 $\{10, 11, 101, 111, 1011, \ldots\}$

Concatenation and Exponentiation

- The concatenation of two strings x and y is denoted by xy
- The *exponentiation* of a string *s* is defined by

$$s^0 = \varepsilon$$

 $s^i = s^{i-1}s$ for $i > 0$

note that $s_{\varepsilon} = \varepsilon s = s$

Language Operations

Union

 $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$

• Concatenation $LM = \{xy \mid x \in L \text{ and } y \in M\}$

Exponentiation

$$\mathsf{L}^{0} = \{ \varepsilon \}; \quad \mathsf{L}^{i} = \mathsf{L}^{i-1}\mathsf{L}$$

- Kleene closure
- $L^{*} = \bigcup_{i=0,...,\infty} L^{i}$ Positive closure $L^{+} = \bigcup_{i=1,...,\infty} L^{i}$

Regular Expressions

Basis symbols:

- ε is a regular expression denoting language {ε} *a* ∈ Σ is a regular expression denoting {*a*}
- If r and s are regular expressions denoting languages L(r) and M(s) respectively, then
 - $r \mid s$ is a regular expression denoting $L(r) \cup M(s)$
 - *rs* is a regular expression denoting L(r)M(s)
 - r^* is a regular expression denoting $L(r)^*$
 - (r) is a regular expression denoting L(r)
- A language defined by a regular expression is called a *Regular set or a Regular Language*

Regular Definitions

Regular definitions introduce a naming convention:

$$\begin{array}{c} d_1 \rightarrow r_1 \\ d_2 \rightarrow r_2 \end{array}$$

 $d_n \rightarrow r_n$ where each r_i is a regular expression over $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

Example:

$$\begin{array}{l} |\text{etter} \rightarrow \mathbf{A} | \mathbf{B} | \dots | \mathbf{Z} | \mathbf{a} | \mathbf{b} | \dots | \mathbf{z} \\ \text{digit} \rightarrow \mathbf{0} | \mathbf{1} | \dots | \mathbf{9} \\ \text{id} \rightarrow \text{letter} (|\text{etter} | \text{digit})^{*} \end{array}$$

The following shorthands are often used:

$$r^{+} = rr^{*}$$

$$r^{?} = r|_{\varepsilon}$$

$$[\mathbf{a}-\mathbf{z}] = \mathbf{a}|\mathbf{b}|\mathbf{c}|...|\mathbf{z}$$

• Examples: digit \rightarrow [0-9] num \rightarrow digit⁺ (. digit⁺)? (E (+ | -)? digit⁺)?

Regular Definitions and Grammars

Grammar

```
stmt \rightarrow if expr then stmt
if expr then stmt else stmt
\mathcal{E}
expr \rightarrow term relop term
term \rightarrow id
Reg
if \rightarrow
```

Regular definitions if \rightarrow if then \rightarrow then else \rightarrow else relop \rightarrow < $| \leq = | <> | > | >= | =$ id \rightarrow letter (letter | digit)* num \rightarrow digit⁺ (. digit⁺)? (E (+ | -)? digit⁺)?

Coding Regular Definitions in Transition Diagrams

Finite Automata

- Finite Automata are used as a model for:
 - Software for designing digital circuits
 - Lexical analyzer of a compiler
 - Searching for keywords in a file or on the web.
 - Software for verifying finite state systems, such as communication protocols.

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Nondeterministic Finite Automata

An NFA is a 5-tuple (*S*, Σ , δ , *s*₀, *F*) where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Transition Graph

 An NFA can be diagrammatically represented by a labeled directed graph called a *transition* graph

Transition Table

> The mapping δ of an NFA can be represented in a *transition table*

$\delta(0,a) = \{0,1\}$	State	Input a	Input Ъ
$\delta(0,\mathbf{b}) = \{0\} \longrightarrow$	0	{0, 1}	{0}
$\delta(1,b) = \{2\}$	1		{2}
$\delta(2,b) = \{3\}$	2		{3}

The Language Defined by an NFA

- An NFA accepts an input string x if and only if there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The language defined by an NFA is the set of input strings it accepts, such as (a b)*abb for the example NFA

From Regular Expression to ε-NFA (Thompson's Construction)

Combining the NFAs of a Set of Regular Expressions

Deterministic Finite Automata

- A deterministic finite automaton is a special case of an NFA
 - \circ No state has an $\epsilon-transition$
 - For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
 - At most one path exists to accept a string
 - Simulation algorithm is simple

Example DFA

A DFA that accepts (a b)*abb

Conversion of an NFA into a DFA

The subset construction algorithm converts an NFA into a DFA using:

 $\varepsilon - closure(s) = \{s\} \cup \{t \mid s \to_{\varepsilon} \dots \to_{\varepsilon} t\}$ $\varepsilon - closure(T) = \bigcup_{s \in T} \varepsilon - closure(s)$ $move(T,a) = \{t \mid s \to_{a} t \text{ and } s \in T\}$

The algorithm produces: Dstates is the set of states of the new DFA consisting of sets of states of the NFA Dtran is the transition table of the new DFA

ε-*closure* and *move* Examples

 ε -closure({0}) = {0,1,3,7} move({0,1,3,7},a) = {2,4,7} ε -closure({2,4,7}) = {2,4,7} move({2,4,7},a) = {7} ε -closure({7}) = {7} move({7},b) = {8} ε -closure({8}) = {8} move({8},a) = \emptyset

Subset Construction Example 1

Subset Construction Example 2

Dstates $A = \{0,1,3,7\}$ $B = \{2,4,7\}$ $C = \{8\}$ $D = \{7\}$ $E = \{5,8\}$ $F = \{6,8\}$