
Lexical Analysis



 It is the first phase of compiler

 Its main task is to read the input characters 
and produce as output a sequence of tokens 
that the parser uses for syntax analysis

 Reasons to make it a separate phase are:
◦ Simplifies the design of the compiler
◦ Provides efficient implementation(read the source 

code)
◦ Improves portability
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 A token is a classification of lexical units
◦ For example: id and num

 Lexemes are the specific character strings 
that make up a token
◦ For example: abc and 123

 Patterns are rules describing the set of 
lexemes belonging to a token
◦ For example: “letter followed by letters and 

digits” and “non-empty sequence of digits”
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Token Lexeme Pattern

if if if

relation <, <=,=,<>,>,>= < or <= or = or <>
or > or >=

id y, x Letter followed by 
letters and digits

num 31 , 28 Any numeric constant

operator + , *, - ,/ Any arithmetic
operator
+ or * or – or /
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y := 31 + 28*x
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 Alphabet: Finite, nonempty set of symbols

Example:  

Example:  

 Strings: Finite sequence of symbols from an 
alphabet e.g. 0011001

 Empty String: The string with zero 
occurrences of symbols from alphabet. The 
empty string is denoted by  



 Length of String: Number of positions for 
symbols in the string. |w| denotes the length 
of string w 

Example |0110| = 4; |  | = 0

 Powers of an Alphabet: = the set of strings 
of length k with symbols from 

Example: 



 The set of all strings over    is denoted 



 Language: is a specific set of strings over 
some fixed alphabet 

Example:
The set of legal English words

The set of strings consisting of n 0's followed by n 
1’s 

LP = the set of binary numbers whose value is 
prime



 The concatenation of two strings x and y is 
denoted by xy

 The exponentiation of a string s is defined by

s0 = 
si = si-1s for i > 0

note that s = s = s



 Union
L  M = {s  s  L or s  M}

 Concatenation
LM = {xy  x  L and y  M}

 Exponentiation
L0 = {};   Li = Li-1L

 Kleene closure
L* = i=0,…, Li

 Positive closure
L+ = i=1,…, Li



 Basis symbols:
◦  is a regular expression denoting language {}
◦ a   is a regular expression denoting {a}

 If r and s are regular expressions denoting 
languages L(r) and M(s) respectively, then
◦ rs is a regular expression denoting L(r)  M(s)
◦ rs is a regular expression denoting L(r)M(s)
◦ r* is a regular expression denoting L(r)*

◦ (r) is a regular expression denoting L(r)
 A language defined by a regular expression 

is called a Regular set or a Regular 
Language
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 Regular definitions introduce a naming 
convention: 

d1  r1

d2  r2

…

dn  rn

where each ri is a regular expression over

  {d1, d2, …, di-1 }
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 Example:

letter  AB…Zab…z
digit  01…9

id  letter ( letterdigit )*

 The following shorthands are often used:

r+ = rr*

r? = r
[a-z] = abc…z

 Examples:
digit  [0-9]
num  digit+ (. digit+)? ( E (+-)? digit+ )?
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stmt  if expr then stmt

 if expr then stmt else stmt

 
expr  term relop term

 term
term  id

 num if  if

then  then

else  else

relop  <  <=  <>  >  >=  =

id  letter ( letter | digit )*

num  digit+ (. digit+)? ( E (+-)? digit+ )?

Grammar

Regular definitions
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 Finite Automata are used as a model for:

◦ Software for designing digital circuits

◦ Lexical analyzer of a compiler

◦ Searching for keywords in a file or on the web.

◦ Software for verifying finite state systems, such as 
communication protocols.



 Translate regular expressions to NFA

 Translate NFA to an efficient DFA
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 An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states
 is a finite set of symbols, the alphabet
 is a mapping from S   to a set of states
s0  S is the start state
F  S is the set of accepting (or final) states
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 An NFA can be diagrammatically represented 
by a labeled directed graph called a transition 
graph
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S = {0,1,2,3}
 = {a,b}
s0 = 0
F = {3}



 The mapping  of an NFA can be represented 
in a transition table
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State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}
(0,b) = {0}
(1,b) = {2}
(2,b) = {3}



 An NFA accepts an input string x if and only 
if there is some path with edges labeled 
with symbols from x in sequence from the 
start state to some accepting state in the 
transition graph

 A state transition from one state to another 
on the path is called a move

 The language defined by an NFA is the set 
of input strings it accepts, such as 
(ab)*abb for the example NFA
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 A deterministic finite automaton is a special 
case of an NFA
◦ No state has an -transition

◦ For each state s and input symbol a there is at 
most one edge labeled a leaving s

 Each entry in the transition table is a single 
state
◦ At most one path exists to accept a string

◦ Simulation algorithm is simple
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 The subset construction algorithm converts 
an NFA into a DFA using:

-closure(s) = {s}  {t  s  …  t}
-closure(T) = sT -closure(s)
move(T,a) = {t  s a t and s  T}

 The algorithm produces:
Dstates is the set of states of the new DFA 
consisting of sets of states of the NFA
Dtran is the transition table of the new DFA
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-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}
-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}
-closure({7}) = {7}
move({7},b) = {8}
-closure({8}) = {8}
move({8},a) = 

0
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4

7

7 8

a ba a none

Also used to simulate NFAs
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Dstates
A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
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D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}
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