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Abstract 

In an earlier work [3], we proved that the symmetric group nS  is a          

(2, 3, 16)-group, if .3716 ≤≤ n  In this paper, the result is found to be 
true beyond 37 and upto 45. 

1. Introduction 

Let yxG ,=  be a finite group generated by x and y and l, m, n be 

positive integers satisfying ( ) .1, ===≤≤ nml xyyxnml  Then following 

the notations of Coxeter and Moser [5], we define an ( )nml ,, -group by 

( ) { ( ) }.1:,,, ====|= nml xyyxyxGGnml  

Such groups have also been used in [6] and [9] for getting interesting 
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relations between the order of the group G and the orders of the generators. 
Note that the study of symmetric group nS  is very important as every finite 

group admits an embedding in a symmetric group nS  for a suitable n (cf. 

Herstein [7]). Moreover, in the notations of Wielandt [11], in a symmetric 
group nS  choosing an element a of order 3 and two nSyx ∈,  of order 2 

with x even and y odd such that xa,  and ya,  are primitive on the n 

symbols and both contain some cyclic permutation of prime order p with 
.2−< np  Then a well known theorem of Jordon implies that nAxa =,  

the alternating group and ., nSya =  Also, it is remarked in [6] that the 

alternating group nA  is a factor group of the (2, 3, 7)-group (see also [8]).     

An interesting relation between order of the group yxG ,=  and ( )nml ,, -

group has been obtained in [9], as the order μ of the group G can be 

expressed as ,nt=μ  it is shown that .llmtn ≤  It is known that if G is a 

primitive group of degree ,kpn +=  where p is a prime and ,3≥k  and    

has element of degree and order p, then G is either the symmetric group nS  

or the alternating group nA  (cf. Wielandt [11]). Following the importance of      

the symmetric group ,nS  in this paper, we are interested in studying the 

structure of the symmetric group nS  under certain restrictions on n. In an 

earlier work [3], we proved that the symmetric group nS  is a (2, 3, 16)-

group, if .3716 ≤≤ n  One of the main results of this paper is that, we      

have proved for ,4538 ≤≤ n  the symmetric group ( ),16,3,2∈nS  that is 

,, yxSn =  where x, y are of orders 2, 3 and the product xy has order 16, 

thus the result in [3] is true beyond 37 and upto 45. The smallest prime 
numbers 2 and 3 play significant role in this paper, as many important finite 
groups can be generated by two elements of orders 2 and 3. For instance,       
we have determined the structure of finite (2, 3, 6)-groups (cf. Al-Salman and 
Al-Thukair [1, 4]). 
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2. Main Results 

We begin with fixing some notations: 

:nD  Dihedral group of degree n, GGG :~=  is isomorphic to :, VG  

Klein 4-group, :nS  Symmetric group on n objects, :nZ  Cyclic group under 

addition modulo n. 

As, in this paper, we are interested in ( )nml ,, -groups, first we study the 

cases 2,2 == ml  or 3, and 2=n  or .3≥n  

Case 1. .2=== nml  In this case, we prove the following: 

Proposition 1. The Klein 4-group ( ).2,2,2∈V  

Proof. Let ( ) ,1:, 222 ==== xyyxyxG  where ( ) ( ),3,21,0=x  

( ) ( ),3,12,0=y  ( ) ( ).2,13,0=xy  It is clear that ,~ VG =  that is, == ~~ VG  

.22 ZZ ×  Hence, it is an abelian group of order 4 and therefore a subgroup 

of .4S  

Case 2. 2== ml  and .3≥n  In this case, we prove the following: 

Proposition 2. The Dihedral group of degree n, ( ).,2,2 nDn ∈  

Proof. Let ( ) .1:, 22 ===== nxyzyxyxG  Since 

( ) ( ) ( ) ,11111211 −−−−−−− ===== zxyxyyxxxxyxxzx  

we get that ,~
nDG =  where ,3≥n  and nD  is a non-abelian group. 

Case 3. ,2=l  3=m  and .16=n  In this case, we prove the following 

proposition, which is the main result of this paper. 

Proposition 3. The symmetric group ( ),16,3,2∈nS  for .4538 ≤≤ n  

Proof. The proof is divided into several lemmas, and the proof for each 
lemma will depend on the following two steps: 
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Step 1. Finding two elements x and y, satisfying: 

(a) Singerman’s formula [2, 10]. 

(b) The relations: ,11632 === zyx  where .xyz =  

Step 2. To prove that ,, nSyxG ==  for .4538 ≤≤ n  

Lemma 1. ( ).16,3,238 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1613,1912,3411,359,308,76,315,144,152,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( )3726,2725,3623,2422,2821,3320,1817,  

( ) ,.12:103103229, 417  

( ) ( ) ( ) ( ) ( ) ( )3511,10,3032,9,318,6,1416,5,154,3,21,0,=y  

( ) ( ) ( ) ( ) ( )2436,23,2825,22,3329,21,1917,13,3420,12,  

( ) 212.13:1872737,26,  

and 

( ) ( ) ( ) ..4.116:37363534,33,32,31...,17,16,15...,3,2,1,0, 22== xyz  

Step 2. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2416,157,146,135,124,113,102,91,80,8 =z  

( ) ( ) ( ) ( ) ( ) ( )3022,2921,2820,2719,2618,2517,  

( ) ..12:3736353433323123, 616  
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Let .8yz=σ  Then we have 

( 4,34,20,25,13,14,31,24,5,19,37,26,18,27,17,22,32,9,0,=σ  

) ( )3028,12,3,10,1,616,36,23,8,2,35,11,15,7,  

( ) .1.2.6.29:213329,  

It follows from 8z  and 2σ  that G is 2-transitive (fixing 33) and thus it is 

primitive. Since the cyclic type of σ is 29.6.2.1, it follows that 6σ  is an 
element of degree and order 29. This proves that 38SG =  (cf. Wielandt [11]). 

Lemma 2. ( ).16,3,239 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2012,3511,3010,98,317,146,54,153,21,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2826,3325,3723,2422,3421,3618,1917,1613,  

( ) ( ) .1,2:03827,3229, 19  

( ) ( ) ( ) ( ) ( ) ( )3521,12,3032,11,3110,8,1416,7,156,4,31,0,=y  

( ) ( ) ( ) ( ) ( )3329,26,2437,23,3425,22,1936,18,2017,13,  

( ) 312.13:9522838,27,  

and for ,xyz =  

( ) ( ) ( ) .1.4.16:3837363534,33,32,31...,16,15...,1,0, 32=z  

Step 2. We have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )25,172416,157,146,135,124,113,102,91,80,8 =z  

( ) ( ) ( ) ( ) ( ) ( ) 383736353433323123,3022,2921,2820,2719,2618,  

.1.2: 716  
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Let .8xz=σ  Then we have 

( )92,30,24,13,4,20,26,36,18,28,12,5,16,22,10,1,8,0,=σ  

( ) ( )3325,19,38,27,17,3511,15,31,37,23,7,3,  

( ) .1.4.6.8.19:1463229,34,21, 2  

It follows that G is 2-transitive by z and 19σ  (fixing 36). As the cycle type  

of σ is ,1.4.6.8.19 2  it follows that 24σ  is an element of degree and order 19. 

Hence, 39SG =  (cf. Wielandt [11]). 

Lemma 3. ( ).16,3,240 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2012,3511,3010,368,97,316,145,43,152,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2826,3325,3823,2422,3421,3718,1917,1613,  

( ) ( ) ,.12:103229,3927, 219  

( ) ( ) ( ) ( ) ( ) ( )3032,11,936,8,3110,7,1416,6,155,3,21,0,=y  

( ) ( ) ( ) ( ) ( )2438,23,3425,22,1937,18,2017,13,3521,12,  

( ) ( ) .13:42839,27,3329,26, 13  

and for ,xyz =  

( ) ( ) ( ) .1.4.16:393837363534,33,32,31...,16,15...,1,0, 42=z  

Step 2. We have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2416,157,146,135,124,113,102,91,80,8 =z  

( ) ( ) ( ) ( ) ( ) ( )3022,2921,2820,2719,2618,2517,  

( ) ..12:39383736353433323123, 816  
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Let .8 yz=σ  Then it follows that 

( 18,27,20,25,30,32,3,7,23,16,14,24,38,31,2,9,36,0,=σ  

) ( )81,1015,13,28,39,19,37,26,33,21,4,12,35,29,  

( ) .1.2.5.32:61122,34,17,5,  

Thus, x and 2σ  show that G is 2-transitive (fixing 1) and therefore G            

is primitive. Since 32σ  is an element of degree and order 5, it follows that 

40SG =  (cf. Wielandt [11]). 

Lemma 4. ( ).16,3,241 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1613,3912,2911,109,308,76,315,144,152,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3527,4025,2624,3623,2221,3720,1918,3817,  

( ) ( ) ,.12:3103433,3228, 319  

( ) ( ) ( ) ( ) ( ) ( )2932,12,3011,9,318,6,1416,5,154,3,21,0,=y  

( ) ( ) ( ) ( ) ( )2640,25,3627,24,3723,21,3820,18,3917,13,  

( ) 512.13:3422191073533,28,  

and 

( ) ( ) ( ) .1.8.16:4039..,.32,31...,16,15...,1,0, 2== xyz  

Step 2. It is clear that G is primitive group as 41 is a prime number. We 
have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )157,146,135,124,113,102,91,80,z8 =  

( ) ( ) ( ) ( ) ( ) ( ) ( )3022,2921,2820,2719,2618,2517,2416,  

( ) ..12:4039383736353433323123, 916  
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Now let .8yz=σ  Then it follows that 

( 38,20,35,33,28,18,40,25,13,14,31,21,32,12,3,9,0,=σ  

)616,36,27,9,124,5,39,17,26,  

( ) .1.13.27:343022,11,15,7,4,29,37,23,8,2,10,1,  

As σ has a cycle type 27.13.1, it follows that 27σ  is an element of degree 
and order 13. Hence, 41SG =  (cf. Wielandt [11]). 

Lemma 5. ( ).16,3,242 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3817,1612,3911,3010,98,317,136,144,152,=x  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )3229,2826,3325,3624,4022,2321,3720,1918,  

( ) ( ) ,.12:53104127,3534, 419  

( ) ( ) ( ) ( ) ( ) ( )3032,11,3110,8,1316,7,146,5,154,3,21,0,=y  

( ) ( ) ( ) ( ) ( )3634,25,2340,22,3724,21,3820,18,3917,12,  

( ) ( ) 313 1.3:351992841,27,3329,26,  

and for xyz =  

( ) ( ) ( ) .1.8.16:414039..,.32,31...,16,15...,1,0, 22=z  

Step 2. We have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2416,157,146,135,124,113,102,91,80,8 =z  

( ) ( ) ( ) ( ) ( ) ( )3022,2921,2820,2719,2618,2517,  

( ) .1.2:414039383736353433323123, 1016  



On Some ( )nm,,2 -groups 1235 

Let .8
1 yz=σ  Then we get 

( 18,33,29,37,24,7,4,39,17,36,34,25,12,3,30,23,10,1,9,0,1 =σ  

)3140,22,32,11,15,13,14,5,16,21,26,38,20,41,27,19,28,  

( ) .1.2.38:35682, 2  

The elements 8z  and 1σ  show that G is 2-transitive (fixing 35) and hence G 

is primitive group. Now let .3
2 yz=σ  Then we have 

( ) ( 28,36,29,33,20,12,9,5,1,1626,40,22,19,7,3,2,4,0,2 =σ  

)615,39,34,17,32,24,37,25,23,18,10,13,8,14,30,  

( ) 7.10.25:3141,27,21,38,35,11,  

and the cycle type of 2σ  is 25.10.7, consequently, 50
2σ  is an element of 

degree and order 7. Hence, 42SG =  (cf. Wielandt [11]). 

Lemma 6. ( ).16,3,243 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2012,3511,409,108,367,396,315,144,152,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2926,3325,4223,2422,3421,4118,1917,1613,  

( ) ( ) ,1.2:28273103837,3230, 519  

( ) ( ) ( ) ( ) ( ) ( )3611,8,3937,7,3132,6,1416,5,154,3,21,0,=y  

( ) ( ) ( ) ( ) ( )3425,22,1941,18,2017,13,3521,12,1040,9,  

( ) ( ) ( ) 1.3:382928,27,3330,26,2442,23, 14  
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and for xyz =  

( ) ( ) ( ) .1.8.16:42414039..,.32,31...,16,15...,1,0, 32=z  

Step 2. We have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2416,157,146,135,124,113,102,91,80,8 =z  

( ) ( ) ( ) ( ) ( ) ( )3022,2921,2820,2719,2618,2517,  

( ) .1.2:42414039383736353433323123, 1116  

Let .8yz=σ  Then we have 

( 39,37,7,4,35,21,28,17,22,26,19,29,12,3,8,2,40,9,0,=σ  

) ( ) ( )2027,41,18,33,30,34,25,13,14,31,24,5,101,3611,15,  

( ) .1.2.5.13.22:381642,23,32,6,  

Since 43 is a prime number, G is a primitive group. Moreover, as the cycle of 

σ is 22.13.5.2.1, 110σ  is an element of degree and order 13. This proves that 

43SG =  (cf. Wielandt [11]). 

Lemma 7. ( ).16,3,244 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6112,3511,9310,139,318,76,415,43,152,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2826,2424,5223,2922,3321,4119,0218,4317,  

( ) ( ) ( ) ( ) ,1.2:1040,3738,363230,3427, 221  

( ) ( ) ( ) ( ) ( ) ( )39,6311,31,2310,31,619,148,6,155,3,21,0,=y  

( ) ( ) ( ) ( ) ( )9226,23,33,0322,20,1419,3421,18,53,7112,  

( ) ( ) ( ) 214 1.3:7483,0437,82,3427,2542,24,  
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and for ,xyz =  

( ) ( ) ( ) .1.8.16:4342414039..,.32,31...,16,15...,1,0, 42=z  

Step 2. We have 

( ) ( ) ( ) ( ) ( )2824,20,16,1511,7,3,1410,6,2,139,5,1,128,4,0,4 =z  

( ) ( ) ( ) ( ) ( )3733,3632,3127,23,19,3026,22,18,2925,21,17,  

( ) ( ) .1.2.4:434241403935,3834, 448  

Let .4yz=σ  Then we have 

( )3536,10,14,31,28,25,18,22,34,40,37,30,23,20,9,3,5,0,=σ  

( 29,42,24,41,19,32,11,7,15,39,17,26,33,38,21,12,6,1,  

) ( ) 21.19.3.1.:1384,2,1643,27,  

The elements y and 3σ  show that G is 2-transitive (fixing 4) and therefore G 

is primitive. Since the cycle type of σ is 21.19.3.1, we have that 21σ  is an 
element of degree and order 19. Hence, 44SG =  (cf. Wielandt [11]). 

Lemma 8. ( ).163,2,45 ∈S  

Proof. 

Step 1. Let ,, yxG =  where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2012,3411,8310,408,97,936,315,414,152,=x  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2826,3424,5223,2922,3321,2418,1917,1613,  

( ) ( ) ( ) ( ) ,1.2:31041,3637,353230,4427, 321  

( ) ( ) ( ) ( ) ( ) ( )9,408,39,107,31,326,14,615,154,3,21,0,=y  

( ) ( ) ( ) ( ) ( )33,0322,19,4218,20,1713,3421,12,38,3511,  

( ) ( ) ( ) ( ) 153:37,41,3682,4427,52,3424,92,6223,  
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and 

( ) ( ) ( ) ..8.116:444342414039...,32,31...,16,15...,1,0, 52== xyz  

Step 2. We have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2416,157,146,135,124,113,102,91,80,8 =z  

( ) ( ) ( ) ( ) ( ) ( )3022,2921,2820,2719,2618,2517,  

( ) .1.2:444342414039383736353433323123, 1316  

Now, letting ,8yz=σ  we find 

( ) ( 326,16,25,13,14,31,29,12,3,38,35,11,15,39,10,1,90,=σ  

)408,2,7,4,34,21,26,19,28,17,43,24,5,20,44,27,42,18,23,  

( ) ( ) .1.2.3.37:223741,36,3330, 2  

The elements z and 3σ  show that G is 2-transitive (fixing 41). Since the 

cycle type of σ is ,1.2.3.37 2  it follows that 6σ  is an element of degree and 

order 37. Therefore, 45SG =  (cf. Wielandt [11]). 

Remark. If nSyxG == ,  and ,nS∈α  then nSyx =αααα −− 11 ,  

holds. 
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