

The p-value or observed of significance level of a statistical test is the smallest value of α for which H₀ can be rejected. It is the actual risk of committing a type I error, if H₀ is rejected based on the observed value of the test statistic. The p-value measures the strength of the evidence against H₀.

The probability of observing samples data by chance under the Null hypothesis (i.e. null hypothesis is true).

In testing a hypothesis, we can also compare the *p*-value to with the significance level (α).

- If the *p*-value < significance level(α) , H₀ is rejected (means significant result)
- If the *p*-value \geq significance level (α), H_0 is not rejected. (means not significant result).

Compute the P- value (Only we used the Z distribution) Case 1 : If the one – tailed test (Right)

$$p-value = P(Z > z_c) = 0.5 - \Phi(z_c)$$

Case 2: If the one – tailed test (left)

$$p-value = P(Z < -z_c) = 0.5 - \Phi(z_c)$$

Case3: If the two - tailed test

$$p - value = P(Z > z_c) + P(Z < -z_c) = [0.5 - \Phi(z_c)] + [0.5 - \Phi(z_c)] = 1 - 2 \Phi(z_c)$$

Or
$$p - value = 2P(Z > |z_c|) = 2[0.5 - \Phi(z_c)]$$

Example

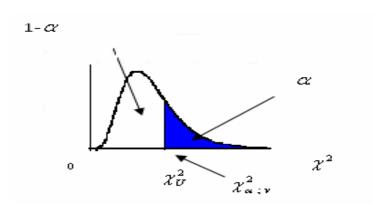
Refer to Jamestown Steel Company example (Slide 8 / chapter 9) compute the p-Value .

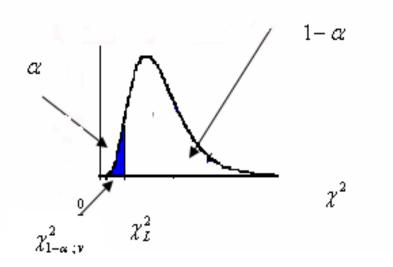
$$\begin{split} H_0 &: \mu = 200 \ H_1 : \mu \neq 200 \\ \mu_0 &= 200 \ , \quad \overline{X} = 203.5 \ , \quad \sigma = 16 \ , \quad n = 50 \ , \alpha = 0.01 \\ p - value &= 2P(Z > |z_c|) = 2[0.5 - \Phi(z_c)] \\ &= 2P(Z > 1.55) = 2[0.5 - \Phi(1.55)] = 2[0.5 - 0.4394] = 2 \times 0.0606 = 0.1212 \\ P - value &= 0.1212 > \alpha = 0.01 \\ \therefore Do \quad not \ reject H_0 \end{split}$$

Test of hypothesis concerning apopulation variance

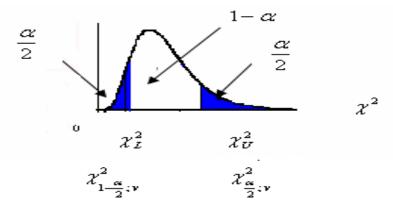
Step (1): State the Null (H_0) and alternate (H_1) hypothesis

Case 1: $\frac{H_0:\sigma^2 \le \sigma_0^2}{H_1:\sigma^2 > \sigma_0^2}$





Case 3:
$$\frac{H_0:\sigma^2 = \sigma_0^2}{H_1:\sigma^2 \neq \sigma_0^2}$$



Step (2): Select a level of significance
Step (3): Select the Test Statistic (computed value)

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

Step (4): Selected the Critical value

The one – tailed test (Right)	$\chi^2_{(\alpha,n-1)}$
The one – tailed test (left)	$\chi^2_{(1-\alpha,n-1)}$
The two – tailed test	$\chi^{2}_{\left(\frac{\alpha}{2},n-1\right)} &\chi^{2}_{\left(1-\frac{\alpha}{2},n-1\right)}$

Step (5): Formulate the Decision Rule and Make a Decision Case1: The one – tailed test (Right)

Reject H₀ if
$$\chi_c^2 > \chi_{(\alpha,n-1)}^2$$

Case2: The one – tailed test (left)

Reject H₀ if
$$\chi_c^2 < \chi_{(1-\alpha,n-1)}^2$$

The two – tailed test: reject H₀ if

Case3: The two – tailed test; reject H_0 if $\chi_c^2 > \chi_{\left(\frac{\alpha}{2}, n-1\right)}^2$ Or $\chi_c^2 < \chi_{\left(1-\frac{\alpha}{2}, n-1\right)}^2$

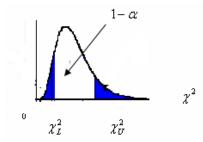
Example (6)

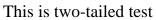
A sample of size 10 produced a variance of 14. Is this sufficient to reject the null hypothesis that σ^2 is equal to 6

When tested using a 0.05 level of significance?

Step 1: State the null hypothesis and the alternate hypothesis.

$$H_0: \sigma^2 = 6$$
$$H_1: \sigma^2 \neq 6$$





(Note: keyword in the problem "that σ^2 is equal to 6")

Step 2: Select the level of significance.

 $\alpha = 0.05$ as stated in the problem $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$ $1 - \frac{\alpha}{2} = 1 - \frac{0.05}{2} = 0.975$

Step 3: Select the test statistic.

$$\chi_c^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{(10-1)I4}{6} = \frac{126}{6} = 21$$

Step 4: Formulate the decision rule (Critical value)

$$\chi^2_{0.025;9} = 19.022$$
 , $\chi_{0.975;9} = 2.7003$

	Right tail areas for the Chi-square Distribution				istribution
V	Q				
<u>df</u> ∖area	0.250	0.100	0.050	0.025	0.010
1	1.3233	2.7055	3.8415	5.0239	6.6349
2	2.7726	4.6052	5.9915	7.3778	9.2104
3	4.1083	6.2514	7.8147	9.3484	11.3449
4	5.3853	7.7794	9.4877	11.1433	13.2767
5	6.6257	9.2363	11.0705	12.8325	15.0863
6	7.8408	10.6446	12.5916	14.4494	16.8119
7	9.0371	12.0170	14.0671	16.0128	18.4753
8	10.2189	13.3616	15.5073	17.5345	20.0902
9	11.3887	14.6837	16.9190	(19.0228)	21.6660
10	12.5489	15.9872	18.3070	20.4832	23.2093

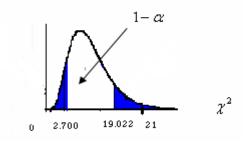
Right tail areas for the Chi-square Distribution				istribution	
V	Q				
df\area	0.750	0.900	0.950	0.975	0.990
1	0.101531	0.015791	0.003932	0.000982	0.000157
2	0.575364	0.210721	0.102586	0.050636	0.020100
3	1.212532	0.584375	0.351846	0.215795	0.114832
4	1.922568	1.063624	0.710724	0.484419	0.297107
5	2.674604	1.610309	1.145477	0.831209	0.554297
6	3.454598	2.204130	1.635380	1.237342	0.872083
7	4.254852	2.833105	2.167349	1.689864	1.239032
8	5.070642	3.489537	2.732633	2. <u>1797</u> 25	1.646506
9	5.898823	4.168156	3.325115	2.700389	2.087889
10	6.737199	4.865178	3.940295	3.246963	2.558199
11	7.584145	5.577788	4.574809	3.815742	3.053496

Step 5: Make a decision and interpret the result.

Reject
$$H_0$$
 if $\chi_c^2 > \chi_{\frac{\alpha}{2},v}^2 = \chi_{0.025;,9}^2 = 19.022$,

Or
$$\chi_c^2 < \chi_{1-\frac{\alpha}{2},\nu}^2 = \chi_{0.975;9} = 2.7003$$

The decision is to reject the null hypothesis, because the computed χ^2 Value (21) is larger than the critical value (19.022). We conclude that there is a difference



The Types of errors

Null Hypothesis	Does Not RejectH ₀	Rejects H ₀
H_0 is true	Do not rejecting The null hypothesis, H_0 , when It is true(1- α) {Correct decision}	rejecting The null hypothesis, H_0 , when It is true(α) {Type I error}
H_0 is false	Do not rejecting The null hypothesis, H_0 , when It is false(β) {Type II error}	rejecting The null hypothesis, H_0 ,when It is false (Power) ($1-\beta$) {Correct decision}

Note:

The quantity $(1 - \beta)$ is called the power of the test because it measures the probability of taking the action that we wish to have occur-that is ,rejecting the H0 when it is false and H1 is true.

$(1-\beta) = \mathbf{P}(\mathbf{rejecting the H0 when it is false})$

Ideally, you would like (α) to be small and the power $(1 - \beta)$ to be large.

Example :

A manufacturer purchases steel bars to make cotter pins. Past experience indicates that the mean tensile strength of all incoming shipments is greater than 10,000 psi and that the standard deviation, σ , is 400 psi. In order to make a decision about incoming shipments of steel bars, the manufacturer set up this rule for the quality-control inspector to follow: "Take a sample of 100 steel bars, at the .05 significance level.

Suppose the unknown population mean of an incoming lot, designated μ_1 is really 10120 psi. Find

a .The type I error (Rejecting the null hypothesis, H_0 , when It is true (α)).

b. The correct decision (Do not rejecting the null hypothesis, H_0 , when It is true $(1-\alpha)$.

c .The type II error (Do not rejecting the null hypothesis, H_0 , when It is false (β)).

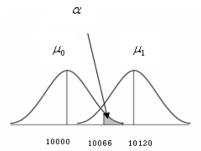
d .The correct decision (Rejecting The null hypothesis, H_0 , when It is false ($1-\beta$)).

Solution:

 $H_0: \mu \le 10000 \\ H_1: \mu > 10000 \\ Z = 1.645 \\ \mu_0 + Z_\alpha \frac{\sigma}{\sqrt{n}} = 10000 + 1.645 \frac{400}{10} = 10000 + 65.8 = 10066$

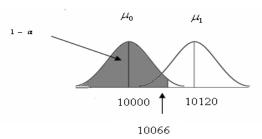
a .The type I error (where rejecting the null hypothesis, H_0 , when it is true (α)).

 $\alpha = 0.05$



b. The correct decision (Do not rejecting The null hypothesis, H_0 , when It is true $(1-\alpha)$.

 $1 - \alpha = 1 - .05 = 0.95$



c .The type II error (where accepting the null hypothesis, H_0 , when it is false (β)).

$$P\left(Z < \frac{\overline{X}_{c} - \mu_{1}}{\frac{\sigma}{\sqrt{n}}}\right) = P\left(Z < \frac{10066 - 10120}{\frac{400}{\sqrt{100}}}\right) = P\left(Z < \frac{-54}{40}\right) = 0.5 - P\left(-1.35 < Z < 0\right)$$

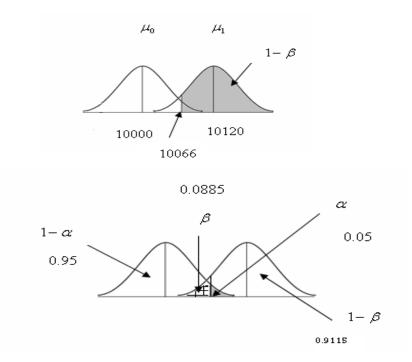
$$0.5 - \Phi(1.35) = 0.5 - 0.4115 = 0.0885 \therefore \beta = 0.0885$$

$$\mu_{0} \qquad \mu_{1} \qquad \beta$$

$$10000 \qquad 10120$$

$$10066$$

d .The correct decision (where H_0 is false and reject it $(1 - \beta)$). $1 - \beta = 1 - 0.0885 = 0.9115$



Example :

A manufacturer purchases steel bars to make cotter pins. Past experience indicates that the mean tensile strength of all incoming shipments is less than 10,000 psi and that the standard deviation, σ , is 400 psi. In order to make a decision about incoming shipments of steel bars, the manufacturer set up this rule for the quality-control inspector to follow: "Take a sample of 100 steel bars, at the .05 significance level.

Suppose the unknown population mean of an incoming lot, designated μ_1 is really 9900psi.find:

a .The type I error (Rejecting the null hypothesis, H_0 , when It is true (α)).

b. The correct decision (Do not rejecting the null hypothesis, H_0 , when It is true $(1-\alpha)$).

c .The type II error (Do not rejecting the null hypothesis, H_0 , when It is false (β)).

d . The correct decision (Rejecting the null hypothesis, \boldsymbol{H}_0 , when It is false (

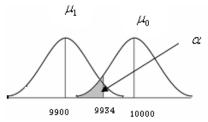
 $(1-\beta)).$

Solution:

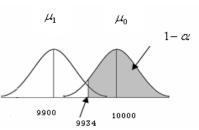
 $H_{0}: \mu \ge 10000$ $H_{1}: \mu < 10000$ Z = 1.645 $\mu_{0} - Z_{\alpha} \frac{\sigma}{\sqrt{n}} = 10000 - 1.645 \frac{400}{10} = 10000 - 65.8 = 9934$

a .The type I error (where rejecting the null hypothesis, H_0 , when it is true (α)).

 $\alpha = 0.05$



b. The correct decision (Do not rejecting the null hypothesis, H_0 , when It is true $(1-\alpha)$).

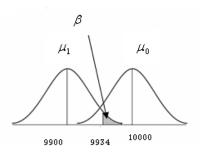


c . The type II error (where accepting the null hypothesis, H_0 , when it is false (β)).

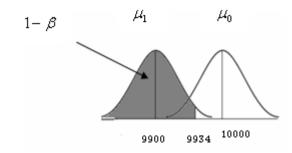
$$P\left(Z > \frac{\overline{X}_c - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right)$$
$$= P\left(Z > \frac{9934 - 9900}{\frac{400}{\sqrt{100}}}\right) = P\left(Z > \frac{34}{40}\right) = 0.5 - P\left(0 < Z < 0.85\right)$$
$$0.5 - \Phi(0.85) = 0.5 - 0.3023 = 0.1977$$

 $\therefore \beta = 0.1977$

 $1 - \alpha = 1 - 0.05 = 0.95$



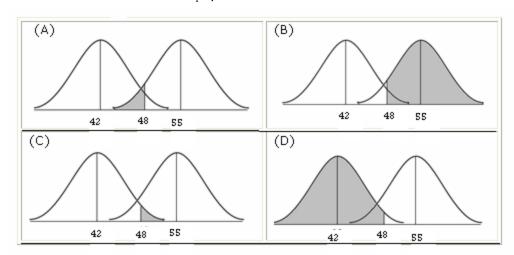
d .The correct decision (where H_0 is false and reject it $(1 - \beta)$). $1 - \beta = 1 - 0.1977 = 0.8023$



Extra examples Example

If

 $\mu_1 = 55$, $H_0: \mu \le 42$ $H_1: \mu > 42$



Complete the following statements:

a. The probability of not rejecting the null hypothesis when it is true is the shaded area in diagram.....

b. The probability of Type I error is the shaded area in diagram.....

c. The probability of Type II error is the shaded area in diagram.....

d .The probability of rejecting the null hypothesis when it is false is the shaded area in. diagram......

Solution:

a. Diagram D

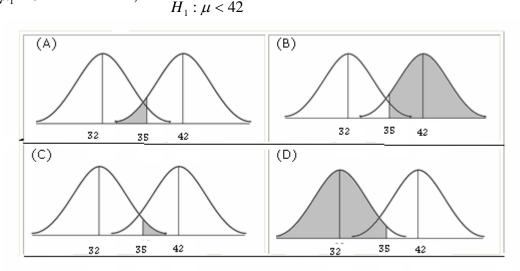
b. Diagram C

- c. Diagram A
- d. Diagram B

Example

If

$$\mu_1 = 32$$
 , $H_0: \mu \ge 42$



Complete the following statements:

a. The probability of not rejecting the null hypothesis when it is true is the shaded area in diagram......

b. The probability of Type I error is the shaded area in diagram.....

c. The probability of Type II error is the shaded area in diagram......

d .The probability of rejecting the null hypothesis when it is false is the shaded area in diagram......

Solution:

a. Diagram B

- b. Diagram A
- c. Diagram C
- d. Diagram D

Example

Null	Does Not Reject	Rejects
Hypothesis	H_0	
•		
	Do not rejecting	rejecting
	The null hypothesis, H_0	The null hypothesis, H_0 , when
	,when	It is true(α)
	It is true $(1-\alpha)$	Example
	Example	$ \mathbb{X} H_0: \mu \ge 60 $
	$\sqrt{-H_0}$: $\mu \ge 60$	$\sqrt{H_1: \mu < 60}$
	${f x} = H_1: \mu < 60$	If the decision is
H_0 is true	If the decision is	reject H ₀
	Do not reject H_0	Let $\mu_1 = 80$
	Let $\mu_1 = 80$	\therefore The decision is incorrect
	\therefore The decision is correct	rejecting
	Do not rejecting	The null hypothesis, H_0 , when
	The null hypothesis, H_0	It is true(α)
	,when	
	It is true $(1-\alpha)$	
	Do not rejecting	rejecting
	The null hypothesis, H_0	The null hypothesis, H_0 , when
	,when	It is false (Power) $(1 - \beta)$
	It is false(β)	Example
	Example	\mathbb{X} $H_0: \mu \ge 60$
	$\sqrt{H_0}$: $\mu \ge 60$	$\sqrt{H_1}$: $\mu < 60$
	x $H_1: \mu < 60$	If the decision is
	If the decision is	reject H_0
H_0 is false	Do not reject H_0	Let $\mu_1 = 50$
	Let $\mu_1 = 50$	\therefore The decision is correct
	\therefore The decision is	rejecting
	incorrect	The null hypothesis, H_0 , when
	Do not rejecting	It is false (Power) $(1 - \beta)$
	The null hypothesis, H_0	
	,when	
	It is false(β)	
	1	I

Note about P_c :