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2.2 Set Operations

Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.

DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

A ∪ B = {x | x ∈ A ∨ x ∈ B}.
The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area
that represents A ∪ B is the shaded area within either the circle representing A or the circle
representing B.

We will give some examples of the union of sets.

EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is,
{1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. ▲

EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathe-
matics majors at your school is the set of students at your school who are majoring either in
mathematics or in computer science (or in both). ▲

DEFINITION 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, is the set
containing those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and
x belongs to B. This tells us that

A ∩ B = {x | x ∈ A ∧ x ∈ B}.

U

BA

A � B is shaded.

FIGURE 1 Venn Diagram of the
Union of A and B.

U

BA

A � B is shaded.

FIGURE 2 Venn Diagram of the
Intersection of A and B.
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The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded
area that is within both the circles representing the sets A and B is the area that represents the
intersection of A and B.

We give some examples of the intersection of sets.

EXAMPLE 3 The intersection of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 3}; that is,
{1, 3, 5} ∩ {1, 2, 3} = {1, 3}. ▲

EXAMPLE 4 The intersection of the set of all computer science majors at your school and the set of all
mathematics majors is the set of all students who are joint majors in mathematics and computer
science. ▲

DEFINITION 3 Two sets are called disjoint if their intersection is the empty set.

EXAMPLE 5 Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = ∅, A and B are disjoint. ▲

We are often interested in finding the cardinality of a union of two finite sets A and B. Note
that |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once,

Be careful not to
overcount! and each element that is in both A and B exactly twice. Thus, if the number of elements that

are in both A and B is subtracted from |A| + |B|, elements in A ∩ B will be counted only once.
Hence,

|A ∪ B| = |A| + |B| − |A ∩ B|.
The generalization of this result to unions of an arbitrary number of sets is called the principle
of inclusion–exclusion. The principle of inclusion–exclusion is an important technique used in
enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6
and 8.

There are other important ways to combine sets.

DEFINITION 4 Let A and B be sets. The difference of A and B, denoted by A− B, is the set containing those
elements that are in A but not in B. The difference of A and B is also called the complement
of B with respect to A.

Remark: The difference of sets A and B is sometimes denoted by A\B.

An element x belongs to the difference of A and B if and only if x ∈ A and x /∈ B. This tells us
that

A− B = {x | x ∈ A ∧ x /∈ B}.
The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded
area inside the circle that represents A and outside the circle that represents B is the area that
represents A− B.

We give some examples of differences of sets.

EXAMPLE 6 The difference of {1, 3, 5} and {1, 2, 3} is the set {5}; that is, {1, 3, 5} − {1, 2, 3} = {5}. This
is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. ▲

EXAMPLE 7 The difference of the set of computer science majors at your school and the set of mathematics
majors at your school is the set of all computer science majors at your school who are not also
mathematics majors. ▲
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U

BA

A – B is shaded.

FIGURE 3 Venn Diagram for
the Difference of A and B.

U

A

A is shaded.

FIGURE 4 Venn Diagram for
the Complement of the Set A.

Once the universal set U has been specified, the complement of a set can be defined.

DEFINITION 5 Let U be the universal set. The complement of the set A, denoted by A, is the complement
of A with respect to U . Therefore, the complement of the set A is U − A.

An element belongs to A if and only if x /∈ A. This tells us that

A = {x ∈ U | x /∈ A}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.

EXAMPLE 8 Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English alphabet). Then
A = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}. ▲

EXAMPLE 9 Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. ▲

It is left to the reader (Exercise 19) to show that we can express the difference of A and B

as the intersection of A and the complement of B. That is,

A− B = A ∩ B.

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here,
using three different methods. These methods are presented to illustrate that there are often many
different approaches to the solution of a problem. The proofs of the remaining identities will

Set identities and
propositional
equivalences are just
special cases of identities
for Boolean algebra.

be left as exercises. The reader should note the similarity between these set identities and the
logical equivalences discussed in Section 1.3. (Compare Table 6 of Section 1.6 and Table 1.) In
fact, the set identities given can be proved directly from the corresponding logical equivalences.
Furthermore, both are special cases of identities that hold for Boolean algebra (discussed in
Chapter 12).

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do this.
We illustrate this type of proof by establishing the first of De Morgan’s laws.
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TABLE 1 Set Identities.

Identity Name

A ∩ U = A Identity laws

A ∪ ∅ = A

A ∪ U = U Domination laws

A ∩ ∅ = ∅
A ∪ A = A Idempotent laws

A ∩ A = A

(A) = A Complementation law

A ∪ B = B ∪ A Commutative laws

A ∩ B = B ∩ A

A ∪ (B ∪ C) = (A ∪ B) ∪ C Associative laws

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) Distributive laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∩ B = A ∪ B De Morgan’s laws

A ∪ B = A ∩ B

A ∪ (A ∩ B) = A Absorption laws

A ∩ (A ∪ B) = A

A ∪ A = U Complement laws

A ∩ A = ∅

EXAMPLE 10 Prove that A ∩ B = A ∪ B.

Solution: We will prove that the two sets A ∩ B and A ∪ B are equal by showing that each set
This identity says that
the complement of the
intersection of two sets
is the union of their
complements.

is a subset of the other.
First, we will show that A ∩ B ⊆ A ∪ B. We do this by showing that if x is in A ∩ B, then it

must also be in A ∪ B. Now suppose that x ∈ A ∩ B. By the definition of complement, x �∈ A ∩
B. Using the definition of intersection, we see that the proposition¬((x ∈ A) ∧ (x ∈ B)) is true.

By applying De Morgan’s law for propositions, we see that ¬(x ∈ A) or ¬(x ∈ B). Using
the definition of negation of propositions, we have x �∈ A or x �∈ B. Using the definition of
the complement of a set, we see that this implies that x ∈ A or x ∈ B. Consequently, by the
definition of union, we see that x ∈ A ∪ B. We have now shown that A ∩ B ⊆ A ∪ B.

Next, we will show that A ∪ B ⊆ A ∩ B. We do this by showing that if x is in A ∪ B, then
it must also be in A ∩ B. Now suppose that x ∈ A ∪ B. By the definition of union, we know that
x ∈ A or x ∈ B. Using the definition of complement, we see that x �∈ A or x �∈ B. Consequently,
the proposition ¬(x ∈ A) ∨ ¬(x ∈ B) is true.

By De Morgan’s law for propositions, we conclude that ¬((x ∈ A) ∧ (x ∈ B)) is true.
By the definition of intersection, it follows that ¬(x ∈ A ∩ B). We now use the definition of
complement to conclude that x ∈ A ∩ B. This shows that A ∪ B ⊆ A ∩ B.

Because we have shown that each set is a subset of the other, the two sets are equal, and the
identity is proved. ▲

We can more succinctly express the reasoning used in Example 10 using set builder notation,
as Example 11 illustrates.
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EXAMPLE 11 Use set builder notation and logical equivalences to establish the first De Morgan law A ∩ B =
A ∪ B.

Solution: We can prove this identity with the following steps.

A ∩ B = {x | x /∈ A ∩ B} by definition of complement

= {x | ¬(x ∈ (A ∩ B))} by definition of does not belong symbol

= {x | ¬(x ∈ A ∧ x ∈ B)} by definition of intersection

= {x | ¬(x ∈ A) ∨ ¬(x ∈ B)} by the first De Morgan law for logical equivalences

= {x | x /∈ A ∨ x /∈ B} by definition of does not belong symbol

= {x | x ∈ A ∨ x ∈ B} by definition of complement

= {x | x ∈ A ∪ B} by definition of union

= A ∪ B by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and set builder
notation, this proof uses the second De Morgan law for logical equivalences. ▲

Proving a set identity involving more than two sets by showing each side of the identity is
a subset of the other often requires that we keep track of different cases, as illustrated by the
proof in Example 12 of one of the distributive laws for sets.

EXAMPLE 12 Prove the second distributive law from Table 1, which states that A ∩ (B ∪ C) = (A ∩ B) ∪
(A ∩ C) for all sets A, B, and C.

Solution: We will prove this identity by showing that each side is a subset of the other side.
Suppose that x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. By the definition of union, it

follows that x ∈ A, and x ∈ B or x ∈ C (or both). In other words, we know that the compound
proposition (x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)) is true. By the distributive law for conjunction over
disjunction, it follows that ((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ A) ∧ (x ∈ C)).We conclude that either
x ∈ A and x ∈ B, or x ∈ A and x ∈ C. By the definition of intersection, it follows that x ∈ A ∩ B

or x ∈ A ∩ C. Using the definition of union, we conclude that x ∈ (A ∩ B) ∪ (A ∩ C). We
conclude that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).

Now suppose that x ∈ (A ∩ B) ∪ (A ∩ C). Then, by the definition of union, x ∈ A ∩ B or
x ∈ A ∩ C. By the definition of intersection, it follows that x ∈ A and x ∈ B or that x ∈ A and
x ∈ C. From this we see that x ∈ A, and x ∈ B or x ∈ C. Consequently, by the definition of
union we see that x ∈ A and x ∈ B ∪ C. Furthermore, by the definition of intersection, it follows
that x ∈ A ∩ (B ∪ C). We conclude that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). This completes
the proof of the identity. ▲

Set identities can also be proved using membership tables. We consider each combination
of sets that an element can belong to and verify that elements in the same combinations of sets
belong to both the sets in the identity. To indicate that an element is in a set, a 1 is used; to
indicate that an element is not in a set, a 0 is used. (The reader should note the similarity between
membership tables and truth tables.)

EXAMPLE 13 Use a membership table to show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution: The membership table for these combinations of sets is shown in Table 2. This table
has eight rows. Because the columns for A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are the same, the
identity is valid. ▲

Additional set identities can be established using those that we have already proved. Consider
Example 14.
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TABLE 2 A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

EXAMPLE 14 Let A, B, and C be sets. Show that

A ∪ (B ∩ C) = (C ∪ B) ∩ A.

Solution: We have

A ∪ (B ∩ C) = A ∩ (B ∩ C) by the first De Morgan law

= A ∩ (B ∪ C) by the second De Morgan law

= (B ∪ C) ∩ A by the commutative law for intersections

= (C ∪ B) ∩ A by the commutative law for unions.

▲

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets A ∪ B ∪ C and
A ∩ B ∩ C are well defined; that is, the meaning of this notation is unambiguous when A,
B, and C are sets. That is, we do not have to use parentheses to indicate which operation
comes first because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C. Note that
A ∪ B ∪ C contains those elements that are in at least one of the sets A, B, and C, and that
A ∩ B ∩ C contains those elements that are in all of A, B, and C. These combinations of the
three sets, A, B, and C, are shown in Figure 5.

U

A B

C

U

A

C

(a) A U B U C is shaded. (b) A     B     C is shaded. 
U U

B

FIGURE 5 The Union and Intersection of A, B, and C.
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EXAMPLE 15 Let A = {0, 2, 4, 6, 8}, B = {0, 1, 2, 3, 4}, and C = {0, 3, 6, 9}. What are A ∪ B ∪ C and
A ∩ B ∩ C?

Solution: The set A ∪ B ∪ C contains those elements in at least one of A, B, and C. Hence,

A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

The set A ∩ B ∩ C contains those elements in all three of A, B, and C. Thus,

A ∩ B ∩ C = {0}. ▲

We can also consider unions and intersections of an arbitrary number of sets. We introduce
these definitions.

DEFINITION 6 The union of a collection of sets is the set that contains those elements that are members of
at least one set in the collection.

We use the notation

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

i=1

Ai

to denote the union of the sets A1, A2, . . . , An.

DEFINITION 7 The intersection of a collection of sets is the set that contains those elements that are members
of all the sets in the collection.

We use the notation

A1 ∩ A2 ∩ · · · ∩ An =
n⋂

i=1

Ai

to denote the intersection of the sets A1, A2, . . . , An. We illustrate generalized unions and
intersections with Example 16.

EXAMPLE 16 For i = 1, 2, . . ., let Ai = {i, i + 1, i + 2, . . . }. Then,

n⋃

i=1

Ai =
n⋃

i=1

{i, i + 1, i + 2, . . . } = {1, 2, 3, . . . },

and

n⋂

i=1

Ai =
n⋂

i=1

{i, i + 1, i + 2, . . . } = {n, n+ 1, n+ 2, . . . } = An. ▲



P1: 1

CH02-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:24

134 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

We can extend the notation we have introduced for unions and intersections to other families of
sets. In particular, we use the notation

A1 ∪ A2 ∪ · · · ∪ An ∪ · · · =
∞⋃

i=1

Ai

to denote the union of the sets A1, A2, . . . , An, . . . . Similarly, the intersection of these sets is
denoted by

A1 ∩ A2 ∩ · · · ∩ An ∩ · · · =
∞⋂

i=1

Ai.

More generally, when I is a set, the notations
⋂

i∈I Ai and
⋃

i∈I Ai are used to denote
the intersection and union of the sets Ai for i ∈ I , respectively. Note that we have

⋂
i∈I Ai =

{x | ∀i ∈ I (x ∈ Ai)} and
⋃

i∈I Ai = {x | ∃i ∈ I (x ∈ Ai)}.
EXAMPLE 17 Suppose that Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, . . . . Then,

∞⋃

i=1

Ai =
∞⋃

i=1

{1, 2, 3, . . . , i} = {1, 2, 3, . . .} = Z+

and

∞⋂

i=1

Ai =
∞⋂

i=1

{1, 2, 3, . . . , i} = {1}.

To see that the union of these sets is the set of positive integers, note that every positive
integer n is in at least one of the sets, because it belongs to An = {1, 2, . . . , n}, and every element
of the sets in the union is a positive integer. To see that the intersection of these sets is the set
{1}, note that the only element that belongs to all the sets A1, A2, . . . is 1. To see this note that
A1 = {1} and 1 ∈ Ai for i = 1, 2, . . . . ▲

Computer Representation of Sets

There are various ways to represent sets using a computer. One method is to store the elements
of the set in an unordered fashion. However, if this is done, the operations of computing the
union, intersection, or difference of two sets would be time-consuming, because each of these
operations would require a large amount of searching for elements. We will present a method
for storing elements using an arbitrary ordering of the elements of the universal set. This method
of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of
elements of U is not larger than the memory size of the computer being used). First, specify an
arbitrary ordering of the elements of U, for instance a1, a2, . . . , an. Represent a subset A of U

with the bit string of length n, where the ith bit in this string is 1 if ai belongs to A and is 0 if
ai does not belong to A. Example 18 illustrates this technique.

EXAMPLE 18 Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the elements in
increasing order; that is, ai = i. What bit strings represent the subset of all odd integers in U,

the subset of all even integers in U, and the subset of integers not exceeding 5 in U?
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Solution: The bit string that represents the set of odd integers in U, namely, {1, 3, 5, 7, 9}, has
a one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading.) Similarly,
we represent the subset of all even integers in U, namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, is represented by the
string

11 1110 0000. ▲

Using bit strings to represent sets, it is easy to find complements of sets and unions, inter-
sections, and differences of sets. To find the bit string for the complement of a set from the bit
string for that set, we simply change each 1 to a 0 and each 0 to 1, because x ∈ A if and only if
x /∈ A. Note that this operation corresponds to taking the negation of each bit when we associate
a bit with a truth value—with 1 representing true and 0 representing false.

EXAMPLE 19 We have seen that the bit string for the set {1, 3, 5, 7, 9} (with universal set {1, 2, 3, 4,

5, 6, 7, 8, 9, 10}) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing 0s with 1s and
vice versa. This yields the string

01 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}. ▲

To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean
operations on the bit strings representing the two sets. The bit in the ith position of the bit string
of the union is 1 if either of the bits in the ith position in the two strings is 1 (or both are 1), and
is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings
for the two sets. The bit in the ith position of the bit string of the intersection is 1 when the bits
in the corresponding position in the two strings are both 1, and is 0 when either of the two bits
is 0 (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit strings
for the two sets.

EXAMPLE 20 The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and 10 1010 1010,
respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the intersection of these sets
is

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}. ▲
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Exercises

1. Let A be the set of students who live within one mile
of school and let B be the set of students who walk to
classes. Describe the students in each of these sets.
a) A ∩ B b) A ∪ B

c) A− B d) B − A

2. Suppose that A is the set of sophomores at your school
and B is the set of students in discrete mathematics at
your school. Express each of these sets in terms of A and
B.
a) the set of sophomores taking discrete mathematics in

your school
b) the set of sophomores at your school who are not tak-

ing discrete mathematics
c) the set of students at your school who either are sopho-

mores or are taking discrete mathematics
d) the set of students at your school who either are not

sophomores or are not taking discrete mathematics
3. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}. Find

a) A ∪ B. b) A ∩ B.
c) A− B. d) B − A.

4. Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h}.
Find
a) A ∪ B. b) A ∩ B.
c) A− B. d) B − A.

In Exercises 5–10 assume that A is a subset of some underly-
ing universal set U .

5. Prove the complementation law in Table 1 by showing

that A = A.
6. Prove the identity laws in Table 1 by showing that

a) A ∪ ∅ = A. b) A ∩ U = A.
7. Prove the domination laws in Table 1 by showing that

a) A ∪ U = U . b) A ∩ ∅ = ∅.
8. Prove the idempotent laws in Table 1 by showing that

a) A ∪ A = A. b) A ∩ A = A.
9. Prove the complement laws in Table 1 by showing that

a) A ∪ A = U. b) A ∩ A = ∅.
10. Show that

a) A− ∅ = A. b) ∅ − A = ∅.
11. Let A and B be sets. Prove the commutative laws from

Table 1 by showing that
a) A ∪ B = B ∪ A.
b) A ∩ B = B ∩ A.

12. Prove the first absorption law from Table 1 by showing
that if A and B are sets, then A ∪ (A ∩ B) = A.

13. Prove the second absorption law from Table 1 by showing
that if A and B are sets, then A ∩ (A ∪ B) = A.

14. Find the sets A and B if A− B = {1, 5, 7, 8}, B − A =
{2, 10}, and A ∩ B = {3, 6, 9}.

15. Prove the second De Morgan law in Table 1 by showing
that if A and B are sets, then A ∪ B = A ∩ B

a) by showing each side is a subset of the other side.

b) using a membership table.
16. Let A and B be sets. Show that

a) (A ∩ B) ⊆ A. b) A ⊆ (A ∪ B).
c) A− B ⊆ A. d) A ∩ (B − A) = ∅.
e) A ∪ (B − A) = A ∪ B.

17. Show that if A, B, and C are sets, then A ∩ B ∩ C =
A ∪ B ∪ C

a) by showing each side is a subset of the other side.
b) using a membership table.

18. Let A, B, and C be sets. Show that
a) (A ∪ B) ⊆ (A ∪ B ∪ C).
b) (A ∩ B ∩ C) ⊆ (A ∩ B).
c) (A− B)− C ⊆ A− C.
d) (A− C) ∩ (C − B) = ∅.
e) (B − A) ∪ (C − A) = (B ∪ C)− A.

19. Show that if A and B are sets, then
a) A− B = A ∩ B.
b) (A ∩ B) ∪ (A ∩ B) = A.

20. Show that if A and B are sets with A ⊆ B, then
a) A ∪ B = B.
b) A ∩ B = A.

21. Prove the first associative law from Table 1 by show-
ing that if A, B, and C are sets, then A ∪ (B ∪ C) =
(A ∪ B) ∪ C.

22. Prove the second associative law from Table 1 by show-
ing that if A, B, and C are sets, then A ∩ (B ∩ C) =
(A ∩ B) ∩ C.

23. Prove the first distributive law from Table 1 by show-
ing that if A, B, and C are sets, then A ∪ (B ∩ C) =
(A ∪ B) ∩ (A ∪ C).

24. Let A, B, and C be sets. Show that (A− B)− C =
(A− C)− (B − C).

25. Let A = {0, 2, 4, 6, 8, 10}, B = {0, 1, 2, 3, 4, 5, 6}, and
C = {4, 5, 6, 7, 8, 9, 10}. Find
a) A ∩ B ∩ C. b) A ∪ B ∪ C.
c) (A ∪ B) ∩ C. d) (A ∩ B) ∪ C.

26. Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.
a) A ∩ (B ∪ C) b) A ∩ B ∩ C

c) (A− B) ∪ (A− C) ∪ (B − C)

27. Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.
a) A ∩ (B − C) b) (A ∩ B) ∪ (A ∩ C)

c) (A ∩ B) ∪ (A ∩ C)

28. Draw the Venn diagrams for each of these combinations
of the sets A, B, C, and D.
a) (A ∩ B) ∪ (C ∩D) b) A ∪ B ∪ C ∪D

c) A− (B ∩ C ∩D)

29. What can you say about the sets A and B if we know that
a) A ∪ B = A? b) A ∩ B = A?
c) A− B = A? d) A ∩ B = B ∩ A?
e) A− B = B − A?
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30. Can you conclude that A = B if A, B, and C are sets such
that
a) A ∪ C = B ∪ C? b) A ∩ C = B ∩ C?
c) A ∪ C = B ∪ C and A ∩ C = B ∩ C?

31. Let A and B be subsets of a universal set U . Show that
A ⊆ B if and only if B ⊆ A.

The symmetric difference of A and B, denoted by A⊕ B, is
the set containing those elements in either A or B, but not in
both A and B.

32. Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.
33. Find the symmetric difference of the set of computer sci-

ence majors at a school and the set of mathematics majors
at this school.

34. Draw a Venn diagram for the symmetric difference of the
sets A and B.

35. Show that A⊕ B = (A ∪ B)− (A ∩ B).

36. Show that A⊕ B = (A− B) ∪ (B − A).

37. Show that if A is a subset of a universal set U , then
a) A⊕ A = ∅. b) A⊕ ∅ = A.
c) A⊕ U = A. d) A⊕ A = U .

38. Show that if A and B are sets, then
a) A⊕ B = B ⊕ A. b) (A⊕ B)⊕ B = A.

39. What can you say about the sets A and B if A⊕ B = A?
∗40. Determine whether the symmetric difference is associa-

tive; that is, if A, B, and C are sets, does it follow that
A⊕ (B ⊕ C) = (A⊕ B)⊕ C?

∗41. Suppose that A, B, and C are sets such that A⊕ C =
B ⊕ C. Must it be the case that A = B?

42. If A, B, C, and D are sets, does it follow that (A⊕ B)⊕
(C ⊕D) = (A⊕ C)⊕ (B ⊕D)?

43. If A, B, C, and D are sets, does it follow that (A⊕ B)⊕
(C ⊕D) = (A⊕D)⊕ (B ⊕ C)?

44. Show that if A and B are finite sets, then A ∪ B is a finite
set.

45. Show that if A is an infinite set, then whenever B is a set,
A ∪ B is also an infinite set.

∗46. Show that if A, B, and C are sets, then

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B|
− |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

(This is a special case of the inclusion–exclusion princi-
ple, which will be studied in Chapter 8.)

47. Let Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, . . . . Find

a)
n⋃

i=1

Ai . b)
n⋂

i=1

Ai .

48. Let Ai = {. . . ,−2,−1, 0, 1, . . . , i}. Find

a)
n⋃

i=1

Ai . b)
n⋂

i=1

Ai .

49. Let Ai be the set of all nonempty bit strings (that is, bit
strings of length at least one) of length not exceeding i.
Find

a)
n⋃

i=1

Ai . b)
n⋂

i=1

Ai .

50. Find
⋃∞

i=1 Ai and
⋂∞

i=1 Ai if for every positive integer i,
a) Ai = {i, i + 1, i + 2, . . .}.
b) Ai = {0, i}.
c) Ai = (0, i), that is, the set of real numbers x with

0 < x < i.

d) Ai = (i,∞), that is, the set of real numbers x with
x > i.

51. Find
⋃∞

i=1 Ai and
⋂∞

i=1 Ai if for every positive integer i,
a) Ai = {−i,−i + 1, . . . ,−1, 0, 1, . . . , i − 1, i}.
b) Ai = {−i, i}.
c) Ai = [−i, i], that is, the set of real numbers x with
−i ≤ x ≤ i.

d) Ai = [i,∞), that is, the set of real numbers x with
x ≥ i.

52. Suppose that the universal set is U = {1, 2, 3, 4,

5, 6, 7, 8, 9, 10}. Express each of these sets with bit
strings where the ith bit in the string is 1 if i is in the
set and 0 otherwise.
a) {3, 4, 5}
b) {1, 3, 6, 10}
c) {2, 3, 4, 7, 8, 9}

53. Using the same universal set as in the last problem, find
the set specified by each of these bit strings.
a) 11 1100 1111
b) 01 0111 1000
c) 10 0000 0001

54. What subsets of a finite universal set do these bit strings
represent?
a) the string with all zeros
b) the string with all ones

55. What is the bit string corresponding to the difference of
two sets?

56. What is the bit string corresponding to the symmetric dif-
ference of two sets?

57. Show how bitwise operations on bit strings can be
used to find these combinations of A = {a, b, c, d, e},
B = {b, c, d, g, p, t, v}, C = {c, e, i, o, u, x, y, z}, and
D = {d, e, h, i, n, o, t, u, x, y}.
a) A ∪ B b) A ∩ B

c) (A ∪D) ∩ (B ∪ C) d) A ∪ B ∪ C ∪D

58. How can the union and intersection of n sets that all are
subsets of the universal set U be found using bit strings?

The successor of the set A is the set A ∪ {A}.
59. Find the successors of the following sets.

a) {1, 2, 3} b) ∅
c) {∅} d) {∅, {∅}}


