Chapter 2: Introduction to Simulation Modeling

Refer to Text Book:

- "Operations Research: Applications and Algorithms" By Wayne L. Winston ,Ch. 21
- "Operations Research: An Introduction" By Hamdi Taha, Ch. 16

Review Last Lecture

Today's Lecture Plan

- 1. Change of state is discrete over time:
 - Arrival of a customer over time
 - Departure of a customer over time
 - Machine breaks down over time
 - Number of unites sold per customer over time
 - Accidents at a traffic intersection
 - Deaths in hospitals

- 2. Why do we call it discrete event ?
- Any changes on the state of the system occur at random points in time
- The behavior of the system is **jumps**
 - 1st cust. arrive after 3 min, 2nd cust. arrive after 5 min. ...
 - Time between customers is uniform between [2,8] min
 - 1^{st} cust. leave after 8 min, 2^{nd} cust. leave after 6 min. ...
 - 1st Machine break-down after 1:30 pm

6 OR 441 K. Nowibet

3. A discrete-event simulation is one where changes in the state of the system occur instantaneously

4. The simulation clock changes when there is a change in state

Example

Consider a single line customer call center.

- If line is idle, any new call is accepted
- If line is busy, any new call is lost
- Some data are collected

Caller	1	2	3	4	5	6	7	8	9	10	11
Calling Time	8:02	8:08	8:13	8:19	8:20	8:24	8:27	8:31	8:39	8:43	8:46
Expected Call Time (min)	2	5	3	2	2	7	2	3	3	4	2

How to model it as a discrete event simulation?

Example

Complete missing data

- There are many details in the system are missing
- Compute Departure time

Caller	1	2	3	4	5	6	7	8	9	10	11
Calling Time	8:02	8:08	8:13	8:19	8:20	8:24	8:27	8:31	8:39	8:43	8:46
Service Time (min)	2	5	3	2	2	7	2	3	3	4	2
Departure Time											

Example

Complete missing data

- There are many details in the system are missing
- Compute Departure time

Caller	1	2	3	4	5	6	7	8	9	10	11
Calling Time	8:02	8:08	8:13	8:19	8:20	8:24	8:27	8:31	8:39	8:43	8:46
Service Time (min)	2	5	3	2	2	7	2	3	3	4	2
Departure Time	8:04	8:13	8:16	8:21	lost	8:31	lost	8:34	8:42	8:47	lost

Example 2. Define the events

Caller	1	2	3	4	5	6	7	8	9	10	11
Calling Time	8:02	8:08	8:13	8:19	8:20	8:24	8:27	8:31	8:39	8:43	8:46
Service Time (min)	2	5	3	2	2	7	2	3	3	4	2
Departure Time	8:04	8:13	8:16	8:21	lost	8:31	lost	8:34	8:42	8:47	lost

Example

2. Define the events

<u>Call Arrival</u>, <u>Call End</u>, <u>Call Lost</u>, <u>Idle Server</u>, <u>Busy Server</u>

Caller	1	2	3	4	5	6	7	8	9	10	11
Calling Time	8:02	8:08	8:13	8:19	8:20	8:24	8:27	8:31	8:39	8:43	8:46
Service Time (min)	2	5	3	2	2	7	2	3	3	4	2
Departure Time	8:04	8:13	8:16	8:21	lost	8:31	lost	8:34	8:42	8:47	lost

Example: Call Arrival , Call End , Call Lost , Idle Server, Busy Server

3. Define System Behavior Discrete-Event Simulation

System Time	Event	System Time	Event	System Time	Event
8:00	Start Service Idle Server	8:20	Call Arrive Call Lost		
8:02	Call Arrive Busy Server	8:21	Call End Idle Server		
8:04	Call End Idle Server	8:24	Call Arrive Busy Server		
8:08	Call Arrive	8:27	Call Arrive Call Lost		
8:13	Call End Call Arrive				
8:16	Call End				13 A CR 441 K. Nowibet

Example:

3. Define System Behavior Discrete-Event Simulation

System Time	Event	System Time	Event
8.00	Work Start	8:16	Call End
8.00	(Idle Server)	8:16	Idle Server
8:02	Call Arrival	8:19	Call Arrival
8:04	Call End	8:20	New Call Lost
8:04	Idle Server	8:21	Call End
8:08	Call Arrival	8:21	Idle Server
8:13	Call End	8:24	Call Arrival
8:13	Call Arrival	8:27	New Call Lost

System Time	Event
8:31	Call End
8:31	Call Arrival
8:34	Call End
8:34	Idle Server
8:39	Call Arrival
8:42	Call End
8:42	Idle Server
8:43	Call Arrival
8:46	New Call Lost
8:47	Call End

<u>Quiz</u>

Consider a single line customer service center.

- If line is idle, any new call is accepted
- If line is busy, any new call is lost

Caller	1	2	3	4	5	6	7	8
Calling Time	8:05	8:09	8:13	8:15	8:19	8:22	8:27	8:30
Expected Call Time (min)	3	3	5	2	4	2	3	5

