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LEARNING OBJECTIVES

▪ To be able to describe and use linear congruential 

pseudorandom number generation methods

▪ To be able to define and use key terms in 

pseudorandom number generation methods such 

as streams, seeds, and period.

▪ To be able to explain the key issues in 

pseudorandom number testing.
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Review Last Lecture
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 Steps for Simulation Modeling

How to conduct a complete simulation modeling 

analysis?

 Applications on Simulation Modeling

The Manufacturing model:

- how to formulate the problem statement.

- how to define goals of the simulation

-how to determine the missing information

- what are the data needed.
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Today’s Lecture Plan

 Idea of Random Number Generators

 Pseudo-Random Numbers

 Linear congruential generator (LCG)

 Definitions

 Conditions for LCG Full Cycle

 Examples

 Random Streams
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Random Number Generation
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▪ Generating any random number from any 
distribution depends on U[0,1].
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Pseudo-Random Numbers
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▪ Random means Not Known for certain 

▪ The random numbers used in a simulation 
are not really random!

▪ You can get all the numbers in advance

Starting 
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Pseudo-Random Numbers
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▪ pseudo-random numbers

Definition: 

A sequence of pseudo-random numbers, U(i), is a

deterministic sequence of numbers in [0,1] having

the same relevant statistical properties as a

sequence of truly random U(0,1) numbers.

(Ripley 1987)
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Pseudo-Random Numbers
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▪ linear congruential generator (LCG)

 a recursive algorithm for producing a 
sequence of pseudorandom numbers. 

Each new pseudorandom number from the 
algorithm depends on the previous 
pseudorandom number

 There must be a starting value called the 
seed
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Linear congruential generator (LCG)
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Linear congruential generator (LCG)
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 choice of the parameters of the LCG : seed, 

constant multiplier, increment, and modulus, 

that is, the, will determine the properties of the 

sequences 

properly chosen parameters, an LCG can be 

made to produce pseudorandom numbers look 

like real random. 
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Linear congruential generator (LCG)
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EXAMPLE
Consider an LCG with parameters (m = 8, a = 5, c 

= 1, R0 = 5). Compute the first nine values for Ri

and Ui from the defined sequence.

how to compute using the mod operator. The 

mod operator is defined as
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Linear congruential generator (LCG)
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EXAMPLE

In our example
m = 8
a = 5
c = 1
R0 = 5
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Linear congruential generator (LCG)
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EXAMPLE



OR 441 
K. Nowibet

Linear congruential generator (LCG)

14

Notes to conceder on LCG:
▪ the Ui are simple fractions involving m = 8. 

▪ Certainly, this sequence does not appear very random. (pseudo-

random) … Why?

▪ The Ui can only take one of the rational values:

▪ if m is small, there will be big gaps on the interval [0, 1) 

▪ if m is large, then the Ui will be distributed on [0, 1).



OR 441 
K. Nowibet

Linear congruential generator (LCG)
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Cycle of LCG:

▪ Definition: a sequence generates the same value as a previously 

generated value, then the sequence cycle. 

▪ Definition: The length of the cycle is called the period of the 

LCG.

▪ Definition: the LCG is said to achieve its full period if the cycle 

length is equals to m. 

▪ LCG has a long cycle for good choices of parameters a, m, c.

▪ Most computers (32-bit) has value for 

m = 231 − 1 = 2,147,483,647 

represents the largest integer number.
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Linear congruential generator (LCG)
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Theorem: (LCG Full Period Conditions) 
An LCG has full period if and only if the following three 

conditions hold:

1. The only positive integer that (exactly) divides both 

m and c is 1 (i.e., c and m have no common factors 

other than 1).

2. If q is a prime number that divides m then q should 

divide (a − 1) (i.e., (a − 1) is a multiple of every 

prime number that divides m).

3. If 4 divides m, then 4 should divide (a − 1) 

(i.e., (a − 1) is a multiple of 4 if m is a multiple of 4).
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Linear congruential generator (LCG)
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Example : (LCG Full Period Conditions) 

To apply the theorem, you must check if each of the three 

conditions holds for the generator. 

m = 8  , a = 5  , c = 1

Cond-1.  c and m have no common factors other than 1: 

factors of m = 8 are (1, 2, 4, 8), since c = 1 (with factor 1) 

condition 1 is true.

Cond-2. (a − 1) is a multiple of every prime number that 

divides m:  The first few prime numbers are (1, 2, 3, 5, 7). 
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Linear congruential generator (LCG)
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Example : (LCG Full Period Conditions) 

To apply the theorem, you must check if each of the three 

conditions holds for the generator. 

m = 8  , a = 5  , c = 1

Cond. 2: (a − 1) is a multiple of every prime number that divides m. 

The prime numbers, q, that divide m = 8 are (q = 1, 2). Since a = 5 

and (a − 1) = 4, clearly q = 1 divides 4 and q = 2 divides 4. Thus, 

condition 2 is true.

Cond. 3: If 4 divides m, then 4 should divide (a − 1).

Since m = 8, clearly 4 divides m. Also, 4 divides (a − 1) = 4. Thus, 

condition 3 holds.
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Linear congruential generator (LCG)
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Random Stream

Definition (Random Number Stream): The subsequence of 
random numbers generated from a given seed is called a 
random number stream.

80 5 RR 

21 R

32 R

03 R

14 R

65 R

76 R

47 R

▪ A seed, e.g. R1 =2, defines a 
starting place in the cycle and thus 
a sequence.

▪ Small period easy to remember 
the random number streams

▪ With large m hard to remember 
the stream. 
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Linear congruential generator (LCG)
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Random Stream 

Seed 1

Seed 2

Seed 3
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Linear congruential generator (LCG)
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Random Stream
▪ choose to divide the entire 

sequence so that the 

number of non-overlapping 

random numbers in each 

stream is quite large

▪ computer simulation 

languages come with a 

default set of streams that 

divide the “circle” up into 

independent sets of random 

numbers

Stream 
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number

Stream 

1000 

random 

number

Stream 
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random 

number

Stream 
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random 
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m , a , c

With 4000 

cycle length
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Linear congruential generator (LCG)

Random Stream
▪ The streams are only independent if you do not use up 

all the random numbers within the subsequence.

▪ To insure independence in the simulation, you can 

associate a specific stream with specific random 

processes in the model. For example: 

1. Customers arrival process: stream 1.

2. Service time : stream 2.

3. Demand type: stream 3. 
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Linear congruential generator (LCG)

Exercise
Analyze the following LCG: 

X(i) = (11 X(i – 1) + 5)(mod(16)), X0 = 1 

▪ What is the maximum possible period length for 

this generator? 

▪ Does this generator achieve the maximum possible 

period length? Justify your answer. 


