# Chapter 5: Generating Random Numbers from Distributions

See Reading Assignment



## **Review**

#### **1. Inverse Transform**

Generate a number  $\mathbf{u}_i$  between 0 and 1 (one U-axis) and then find the corresponding  $\mathbf{x}_i$  coordinate by using  $\mathbf{F}^{-1}(\cdot)$ .

#### 2. The Convolution Method

The distribution of the sum of two or more random variables is called the *convolution*.

#### **3.** Acceptance/Rejection Method

Replace f(x) by a simple PDF, w(x), which can be sampled from more easily. w(x) is based on the development of a majorizing function for f(x).

# 5. Mixed, Truncated and Shifted Dist.

- We consider three random variate generation methods
  - Mixture Distributions
  - Truncated Distributions
  - Shifted Distributions
- The new methods depend on previous methods.
- These methods give flexibility in modeling the randomness.



# The distribution of a random variable X is a mixture distribution if the CDF of X has the form

$$F_X(x) = \sum_{i=1}^k \omega_i F_{X_i}(x)$$

where  $0 < \omega_i < 1$ ,  $\sum_{i=1}^k \omega_i = 1$ ,  $k \ge 2$ , and  $F_{X_i}(x)$  is the CDF of a continuous or discrete random variable  $X_i$ , i = 1, ..., k.







- Mixture distributions combine the characteristics of two or more distributions,
- More flexibility in modeling many processes.
- Example, standard distributions, such as the normal, Weibull, and lognormal, have a single mode. Mixture distributions are often utilized for the modeling of data sets that have more than one mode.



#### Example

Process: event follow some distribution in three days of the week and the event change to another distribution from four days of the week

1<sup>st</sup> three days of the week dist.



2<sup>nd</sup> four days of the week dist.





# 5. Mixed, Truncated and Shifted Dist.

## **5.1 Mixture Distribution**





#### • Example

Suppose the time that it takes to pay with a credit card,  $X_1$ , is exponentially distributed with a mean of 1.5 min and the time that it takes to pay with cash,  $X_2$ , is exponentially distributed with a mean of 1.1min. In addition, suppose that the chance that a person pays with credit is 70%. Then, the overall distribution representing the payment service time, X, has an hyperexponential distribution with parameters  $\omega_1 =$ 0.7,  $\omega_2 = 0.3$ ,  $\lambda_1 = 1/(1.5)$ , and  $\lambda_2 = 1/(1.1)$ .



## • Example

Then, distribution of the payment service time, *X*, has an hyperexponential distribution with parameters

$$\omega_1 = 0.7$$
, Exponential  $\lambda_1 = 1/1.5$   
and  $\omega_2 = 0.3$ , Exponential  $\lambda_2 = 1/1.1$ 

$$F_{X}(x) = \omega_{1}F_{X_{1}}(x) + \omega_{2}F_{X_{2}}(x)$$

$$F_{X_{1}}(x) = 1 - \exp(-\lambda_{1}x)$$

$$F_{X_{2}}(x) = 1 - \exp(-\lambda_{2}x)$$



- **Example**  $F_X(x) = \omega_1 F_{X_1}(x) + \omega_2 F_{X_2}(x)$   $F_{X_1}(x) = 1 - \exp(-\lambda_1 x)$   $F_{X_2}(x) = 1 - \exp(-\lambda_2 x)$
- The algorithm for this distribution is
  - 1: Generate  $u \sim U(0, 1)$ 2: Generate  $v \sim U(0, 1)$ 3: IF  $u \leq 0.7$  THEN 4:  $X = F_{X_1}^{-1}(v) = -1.5 \ln(1-v)$ 5: ELSE 6:  $X = F_{X_2}^{-1}(v) = -1.1 \ln(1-v)$ 7: END IF 8: RETURN X



• Example

|    |       | Choose |       |       |
|----|-------|--------|-------|-------|
| n  | U     | F      | V     | Get X |
| 1  | 0.592 | F1(X)  | 0.641 | 1.537 |
| 2  | 0.818 | F2(X)  | 0.984 | 4.520 |
| 3  | 0.375 | F1(X)  | 0.495 | 1.026 |
| 4  | 0.371 | F1(X)  | 0.902 | 3.483 |
| 5  | 0.812 | F2(X)  | 0.815 | 1.859 |
| 6  | 0.961 | F2(X)  | 0.026 | 0.029 |
| 7  | 0.168 | F1(X)  | 0.188 | 0.312 |
| 8  | 0.274 | F1(X)  | 0.082 | 0.129 |
| 9  | 0.438 | F1(X)  | 0.387 | 0.733 |
| 10 | 0.925 | F2(X)  | 0.243 | 0.306 |

$$F_X(x) = \omega_1 F_{X_1}(x) + \omega_2 F_{X_2}(x)$$
  

$$F_{X_1}(x) = 1 - \exp(-\lambda_1 x)$$
  

$$F_{X_2}(x) = 1 - \exp(-\lambda_2 x)$$



### • Notes

- In Example generating *X* use the inverse transform method for generating from the two exponential distribution.
- General mixture distribution might be any distribution. *Ex.: mixture of a gamma and a lognormal dist.*
- To give flexibility in modeling and generation, use any generation technique.

*Ex.:* one  $F_1(x)$  use inverse transform, other  $F_2(x)$  use acceptance/rejection, and  $F_3(x)$  use convolution.

