Chapter 6: Simulation Using Spread-Sheets (Excel)

Refer to Reading Assignments

Application#2: ATM Operation

Consider cars arrive at a drive-through to a single ATM to have some cash. The machine serve only on car at a time. Assume that cars arrive to the ATM according to a Poisson process with rate 15 cars per hour. Each car spend a random amount of time that is exponentially distributed with rate 20 cars per hour.

Build a simulation spred-sheet file for this system using excel for 100 cars, then do the output analysis

Application#2: ATM Operation

Model Concept and Logic:

- Let T(i) be the time between car arrivals
 T(i) is random variable ~ Poisson process (λ = 15 car/hr)
- Let ST(i) be the service time of any car
 ST(i) is random variable ~ Exp(20 car/hr)
- Let AT(i) be the arrival time of the car to the ATM
 AT(i) = AT(i-1) + T(i) , AT(0) = 0

Application#2: ATM Operation

Model Concept and Logic:

- Let SST(i) be the service starting time of car (i)
 SST(i) = AT(i) ; if waiting line = 0
 SST(i) = DT(i-1) ; if waiting line > 0 , DT(0) = 0
- Let IT(i) be the server idle time at the arrival of car (i) if AT(i) >DT(i-1) \rightarrow IT(i) = AT(i) - DT(i-1); if AT(i) <= DT(i-1) \rightarrow IT(i) = 0

- Application#2: ATM Operation
- Model Concept and Logic:
- Let DT(i) be the departure time of any car after service
 DT(i) = AT(i) + WT(i) + ST(i)
- Let WT(i) be waiting time of any car in line
 WT(i) = DT(i) SST(i)

Application#2: ATM Operation

Excel sheet structure

car #	Time between arrivals	Arrival time	Service time	Service start	Cut. Wait?	Wait Time	Departure time	ATM Idle time

Application#2: ATM Operation

Excel Sheet logic

5										
6	car #	Time between arrivals	Arrival time	Service time	Service start	Cut. Wait?	Wait Time	Departure time	ATM Idle time	
7	1	=ROUNDUP((-1/\$D\$1)*LI	=F7	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=G7	0	0	=G7+H7	=F7	
8	2	=ROUNDUP((-1/\$D\$1)*L	=F8+G7	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G8>L7,G8,L7)	=IF(G8 <l7,1,0)< td=""><td>=IF(J8,L7-G8,0)</td><td>=G8+H8+K8</td><td>=IF(J8,0,I8-L7)</td><td></td></l7,1,0)<>	=IF(J8,L7-G8,0)	=G8+H8+K8	=IF(J8,0,I8-L7)	
9	3	=ROUNDUP((-1/\$D\$1)*LI	=F9+G8	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G9>L8,G9,L8)	=IF(G9 <l8,1,0)< td=""><td>=IF(J9,L8-G9,0)</td><td>=G9+H9+K9</td><td>=IF(J9,0,I9-L8)</td><td></td></l8,1,0)<>	=IF(J9,L8-G9,0)	=G9+H9+K9	=IF(J9,0,I9-L8)	
10	4	=ROUNDUP((-1/\$D\$1)*LI	=F10+G9	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G10>L9,G10,L9)	=IF(G10 <l9,1,0)< td=""><td>=IF(J10,L9-G10,0)</td><td>=G10+H10+K10</td><td>=IF(J10,0,I10-L9)</td><td></td></l9,1,0)<>	=IF(J10,L9-G10,0)	=G10+H10+K10	=IF(J10,0,I10-L9)	
11	5	=ROUNDUP((-1/\$D\$1)*Lf	=F11+G10	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G11>L10,G11,L10)	=IF(G11 <l10,1,0)< td=""><td>=IF(J11,L10-G11,0)</td><td>=G11+H11+K11</td><td>=IF(J11,0,I11-L10)</td><td></td></l10,1,0)<>	=IF(J11,L10-G11,0)	=G11+H11+K11	=IF(J11,0,I11-L10)	
12	6	=ROUNDUP((-1/\$D\$1)*Lf	=F12+G11	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G12>L11,G12,L11)	=IF(G12 <l11,1,0)< td=""><td>=IF(J12,L11-G12,0)</td><td>=G12+H12+K12</td><td>=IF(J12,0,I12-L11)</td><td></td></l11,1,0)<>	=IF(J12,L11-G12,0)	=G12+H12+K12	=IF(J12,0,I12-L11)	
13	7	=ROUNDUP((-1/\$D\$1)*L	=F13+G12	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G13>L12,G13,L12)	=IF(G13 <l12,1,0)< td=""><td>=IF(J13,L12-G13,0)</td><td>=G13+H13+K13</td><td>=IF(J13,0,I13-L12)</td><td></td></l12,1,0)<>	=IF(J13,L12-G13,0)	=G13+H13+K13	=IF(J13,0,I13-L12)	
14	8	=ROUNDUP((-1/\$D\$1)*L	=F14+G13	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G14>L13,G14,L13)	=IF(G14 <l13,1,0)< td=""><td>=IF(J14,L13-G14,0)</td><td>=G14+H14+K14</td><td>=IF(J14,0,I14-L13)</td><td></td></l13,1,0)<>	=IF(J14,L13-G14,0)	=G14+H14+K14	=IF(J14,0,I14-L13)	
15	9	=ROUNDUP((-1/\$D\$1)*L	=F15+G14	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G15>L14,G15,L14)	=IF(G15 <l14,1,0)< td=""><td>=IF(J15,L14-G15,0)</td><td>=G15+H15+K15</td><td>=IF(J15,0,I15-L14)</td><td></td></l14,1,0)<>	=IF(J15,L14-G15,0)	=G15+H15+K15	=IF(J15,0,I15-L14)	
16	10	=ROUNDUP((-1/\$D\$1)*L	=F16+G15	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G16>L15,G16,L15)	=IF(G16 <l15,1,0)< td=""><td>=IF(J16,L15-G16,0)</td><td>=G16+H16+K16</td><td>=IF(J16,0,I16-L15)</td><td></td></l15,1,0)<>	=IF(J16,L15-G16,0)	=G16+H16+K16	=IF(J16,0,I16-L15)	
17	11	=ROUNDUP((-1/\$D\$1)*L	=F17+G16	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G17>L16,G17,L16)	=IF(G17 <l16,1,0)< td=""><td>=IF(J17,L16-G17,0)</td><td>=G17+H17+K17</td><td>=IF(J17,0,I17-L16)</td><td></td></l16,1,0)<>	=IF(J17,L16-G17,0)	=G17+H17+K17	=IF(J17,0,I17-L16)	
18	12	=ROUNDUP((-1/\$D\$1)*L	=F18+G17	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G18>L17,G18,L17)	=IF(G18 <l17,1,0)< td=""><td>=IF(J18,L17-G18,0)</td><td>=G18+H18+K18</td><td>=IF(J18,0,I18-L17)</td><td></td></l17,1,0)<>	=IF(J18,L17-G18,0)	=G18+H18+K18	=IF(J18,0,I18-L17)	
19	13	=ROUNDUP((-1/\$D\$1)*L	=F19+G18	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G19>L18,G19,L18)	=IF(G19 <l18,1,0)< td=""><td>=IF(J19,L18-G19,0)</td><td>=G19+H19+K19</td><td>=IF(J19,0,I19-L18)</td><td></td></l18,1,0)<>	=IF(J19,L18-G19,0)	=G19+H19+K19	=IF(J19,0,I19-L18)	
20	14	=ROUNDUP((-1/\$D\$1)*L	=F20+G19	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G20>L19,G20,L19)	=IF(G20 <l19,1,0)< td=""><td>=IF(J20,L19-G20,0)</td><td>=G20+H20+K20</td><td>=IF(J20,0,I20-L19)</td><td></td></l19,1,0)<>	=IF(J20,L19-G20,0)	=G20+H20+K20	=IF(J20,0,I20-L19)	
21	15	=ROUNDUP((-1/\$D\$1)*L	=F21+G20	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G21>L20,G21,L20)	=IF(G21 <l20,1,0)< td=""><td>=IF(J21,L20-G21,0)</td><td>=G21+H21+K21</td><td>=IF(J21,0,I21-L20)</td><td></td></l20,1,0)<>	=IF(J21,L20-G21,0)	=G21+H21+K21	=IF(J21,0,I21-L20)	
22	16	=ROUNDUP((-1/\$D\$1)*L	=F22+G21	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G22>L21,G22,L21)	=IF(G22 <l21,1,0)< td=""><td>=IF(J22,L21-G22,0)</td><td>=G22+H22+K22</td><td>=IF(J22,0,I22-L21)</td><td></td></l21,1,0)<>	=IF(J22,L21-G22,0)	=G22+H22+K22	=IF(J22,0,I22-L21)	
23	17	=ROUNDUP((-1/\$D\$1)*L	=F23+G22	=ROUNDUP((-1/\$D\$2)*LN(1-RAND())*60,0)	=IF(G23>L22,G23,L22)	=IF(G23 <l22,1,0)< td=""><td>=IF(J23,L22-G23,0)</td><td>=G23+H23+K23</td><td>=IF(J23,0,I23-L22)</td><td></td></l22,1,0)<>	=IF(J23,L22-G23,0)	=G23+H23+K23	=IF(J23,0,I23-L22)	
24	10	-POUNDUD// 1/CDC1*/	-EDALCOD	-DUINDID// 1/CDC2*LN/1 DAND/*60.0\	-15/6245122 624 1221	-15/62/21 22 1 0)	-15/12/122 62/0	-634-434-434	-IE/12/ 012/ 122)	

Application#2: ATM Operation

Use data tables for 100 replications, evaluate the ATM operation with 95% confidence intervals

- 1. Average waiting time if customer waits
- 2. Average waiting time in general
- 3. Percentage of time server is idle
- 4. Average number of customers waiting
- 5. Construct a plot for each replication

- Application#2: ATM Operation
- Assume that the service time is Erlang with parameters r= 3 and $\lambda = 25$ car/hr. Re-do the output analysis
- Assume that the arrival rate is Erlang with parameters r= 2 and $\lambda = 20$ car/hr. Re-do the output analysis.
- Assume that that the arrival rate is Exponential with uncertain arrival rate may takes the values from 10 to 20. With the service time is Er(r= 3 and λ = 25 car/hr). Re-do the output analysis for each value of λ

Application#2: ATM Operation

Decision Making using Simulation

- Assume that there are 4 types of ATM machines that the bank wants to buy one of them.
 - ATM#1: Service rate is 20 car/hr, Exponential dist. The ATM costs 80,000 SR. The maintenance cost is 1000SR/mon
 - ATM#2: Service rate is 40 car/hr, Er (r=2,λ=30) Exponential dist. The ATM costs 60,000 SR. The maintenance cost is 1500SR/mon
 - ATM#3: Service time is Uniform [4,8] min. The ATM costs 50,000 SR. The maintenance cost is 500SR/mon

Finally, The cost of waiting for each car is 50SR/hour/car

