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Abstract
The outbreaks of Coronavirus (COVID-19) epidemic have increased the pressure on healthcare and medical systems world-

wide. The timely diagnosis of infected patients is a critical step to limit the spread of the COVID-19 epidemic. The chest

radiography imaging has shown to be an effective screening technique in diagnosing the COVID-19 epidemic. To reduce the

pressure on radiologists and control of the epidemic, fast and accurate a hybrid deep learning framework for diagnosingCOVID-

19 virus in chest X-ray images is developed and termed as the COVID-CheXNet system. First, the contrast of the X-ray image

was enhanced and the noise level was reduced using the contrast-limited adaptive histogram equalization and Butterworth

bandpass filter, respectively. This was followed by fusing the results obtained from two different pre-trained deep learning

models based on the incorporation of a ResNet34 and high-resolution networkmodel trained using a large-scale dataset. Herein,

the parallel architecture was considered, which provides radiologists with a high degree of confidence to discriminate between

the healthy and COVID-19 infected people. The proposed COVID-CheXNet system has managed to correctly and accurately

diagnose the COVID-19 patients with a detection accuracy rate of 99.99%, sensitivity of 99.98%, specificity of 100%, precision

of 100%, F1-score of 99.99%, MSE of 0.011%, and RMSE of 0.012% using the weighted sum rule at the score-level. The

efficiency and usefulness of the proposed COVID-CheXNet system are established along with the possibility of using it in real

clinical centers for fast diagnosis and treatment supplement, with less than 2 s per image to get the prediction result.

Keywords Coronavirus COVID-19 epidemic � Deep learning � Transfer learning � ResNet34 model � Chest radiography
imaging � Chest X-ray images

1 Introduction

The Coronavirus (COVID-19) epidemic is one of the most

infectious diseases, which is distinguished as a pandemic

due to its ability to rapidly spread in most of the world

countries with serious effects on the lives of billions of

people. The first COVID-19 infected case was identified in

December 2019 in Wuhan city. Recently, all the countries

around the world are striving and fighting to limit the

spread of the COVID-19 epidemic. To date, the number of

positive confirmed COVID-19 cases worldwide is around

34,170,335 cases and 1,018,899 death cases, and

25,437,901 were recovered (Worldmeter 2020). As shown

in Fig. 1, the number of daily confirmed infected cases is

dramatically increasing, while it was less than 500 cases,

on February 2, 2020, it is exceeding the 315,710 confirmed

cases, on September 30, 2020. In contrast, the highest

number of recovered cases was 298,473 cases, on
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September 18, 2020. Most of the people who are infected

with COVID-19 are suffering from a respiratory disease

that does not require special treatment. The elderly and

those with chronic diseases, such as diabetes chronic res-

piratory disease, cancer identification, cardiovascular dis-

ease detection, and chronic respiratory disease are more

likely to experience dangerous illness (Chen et al. 2020).

Some critical symptoms can be recognized on the infected

COVID-19 patient, such as fever, dry cough, tiredness,

headache, vomiting, sore throat, sneezing, dyspnea, and

myalgia (Huang et al. 2020; Guo et al. 2020). To date, there

is no unique drug or vaccine available for the COVID-19

virus where several extensive clinical trials and experi-

ments were conducted to find new therapies.

The most important step to monitor and control the

COVID-19 virus rapid spread is employing an efficient

screening technique for infected patients to enable the early

diagnosis of the virus and patient treatment follow-up.

Until now, many screening techniques have been employed

to detect the initial symptoms of the COVID-19 virus. For

instance, polymerase chain reaction (PCR) is a commonly

used screening technique to identify SARS-CoV-2 RNA

from respiratory samples as well as the COVID-19 virus

(Wang et al. 2020a, b). Although, the high sensitivity of the

PCR testing, it is considered as a very tedious and time-

consuming technique and required more user interaction.

To overcome these limitations of the PCR technique,

several studies have demonstrated the reliability of the

chest radiography imaging technique, such as the X-ray

and computed tomography (CT) in early diagnosis of the

COVID-19 virus (Ming-Yen et al. 2020). For instance, CT

findings were positive for 140 patients with COVID-19

infection as presented in (Huang et al. 2020). Thus, chest

radiographs imaging technique is considered as one of the

most powerful medical imaging techniques in the hospital

to detect chest abnormalities. However, the major issue of

using the chest radiograph imaging technique is the long-

time required by the radiologists to read and interpret the

chest radiography images (Brady 2017). Furthermore, since

the COVID-19 virus was reported as a pandemic, the

number of patients who required an X-ray image exami-

nation is increasing compared with a fewer number of

available radiologists. Consequently, this can keep the

radiologists and the hospital overloaded, delay the diag-

nosis process, and affect patient’s treatment and follow-up,

and a serious risk of cross-infection to other people.

Therefore, the need for a rapid and automated interpreta-

tion of the radiography images to help the radiologists to

accurately detect the COVID-19 virus is extremely desired.

To overcome these drawbacks of the adopted imaging

acquisition techniques and enhance the image quality,

computer-aided diagnostic (CAD) system can be used to

help radiologists and clinicians correctly interpreting and

understanding the details of a massive amount of chest

radiography images in real-time.

This paper proposes a new hybrid deep learning

framework, named as the COVID-CheXNet system for

diagnosing COVID-19 virus in X-ray images by combining

the results obtained from two discriminative deep learning

models. The proposed COVID-CheXNet system is com-

posed of four main stages: image pre-processing, features

extraction, image classification, and fusion. First, the

CLAHE method and Butterworth bandpass filter are

applied sequentially to enhance the contrast of the chest

X-ray image and reduce the noise level, respectively. This

is followed by applying two distinctive deep learning

approaches based on ResNet34 and HRNet to address the

features extraction and classification tasks in the proposed

Fig. 1 The plots of the number of newly infected versus the number of recovered and discharged patients each day (Worldmeter 2020)
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COVID-CheXNet system. Finally, the results generated

from these two deep learning models are combined to make

the final decision. The main motivation of developing the

proposed COVID-CheXNet system is to employ it as a

diagnostic tool that can help the decision-makers in the

medical and health centers (radiologists and clinicians) to

rapidly and accurately identify the COVID-19 virus in the

X-ray images. This can significantly reduce the pressure on

the radiologists and hospitals while this epidemic is still

rapidly spreading and the number of infected people is

dramatically increased. The main contributions of this

study can be summarized as follows:

1. A new hybrid deep learning framework is proposed,

termed as the COVID-CheXNet system for diagnosing

COVID-19 pneumonia in chest X-rays images by

combining the results generated from two different

deep learning methods (e.g., ResNet34 and HRNet). To

the authors’ best knowledge, this is the first attempt to

examine the possibility of using ResNet34 and HRNet

models in a unified system to detect the COVID-19

virus in X-ray images. Furthermore, no one as far as we

know has applied the HRNet for diagnosing the

COVID-19 virus in X-ray images. Unlike most of the

previously existing systems, the final decision in the

proposed COVID-CheXNet system is obtained by

combining the results generated from two different

deep learning models trained on the top of a large-scale

and challenging dataset. Herein, a high degree of

confidence is given to radiologists to differentiate

between healthy and COVID-19 infected cases by

considering the parallel architecture to combine the

results obtained.

2. An efficient image enhancement procedure is proposed

based on the CLAHE method and Butterworth band-

pass filter to enhance the contrast of the X-ray image

and reduce the noise level, respectively. We argue that

training the adopted deep learning models on the top of

the pre-processing images data instead of direct usage

of raw data can significantly enhance their ability to

learn more useful feature representations with less

computational complexity to obtain the best-trained

model.

3. A discriminative training methodology supported by a

set of different training strategies (e.g., data augmen-

tation, dropout method, etc.) is also adopted to further

improve the generalization ability of the adopted deep

learning models and prevent the overfitting problem

during the learning process.

4. A large-scale and challenging X-ray dataset is created

and termed as the COVID19-vs-normal dataset. To the

authors’ best knowledge, this dataset is the largest

COVID-19 dataset currently available in the public

domain in terms of containing the largest amount of

X-ray images with confirmed COVID-19 infection.

5. Establish an efficient and useful system that can be

employed in a real-world clinical situation for fast

diagnosis and treatment follow-up that consume less

than 2 s per image to produce the final results.

This paper is organized as follows: Sect. 2 provides a

brief overview of the current related works. The strategy

used to create the COVID19-vs-normal dataset and the

implementation details of the COVID-CheXNet system are

discussed in Sect. 3. Experimental results are presented in

Sect. 4. In Sect. 5, the conclusion of this study and future

work are provided.

2 Related works

Deep learning networks (DNNs) have been efficiently

employed in the medical field with remarkable results and

significant performance compared with the human-level

performance in various challenging image analysis and

classification tasks (Al-Waisy et al. 2017a, b, 2018). Sev-

eral medical imaging systems based on deep learning

approaches have also been employed to support the clini-

cians in the early detection of COVID-19 infection, treat-

ment, and follow-up investigation (De Fauw et al. 2018).

For instance, Ozturk et al. (2020) proposed an automated

COVID-19 detection system based on the DarkNet model

to perform a binary classification task (e.g., normal and

COVID-19) and a multiclass classification task (e.g., nor-

mal, pneumonia, and COVID-19). This system has man-

aged to achieve up to 98.08% accuracy. A tailored COVID-

Net model for detecting the virus by using chest X-ray

images was developed by Wang and Wong (2020). The

COVID-Net model was trained to categorize the chest

X-ray image into one of three different classes (e.g., nor-

mal, none-COVID19, and COVID19). The performance of

the COVID-Net model was tested using a dataset com-

prises a total of 16,756 images gathered from two different

datasets (COVID-19 X-ray dataset presented in Cohen

et al. (2020) and RSNA pneumonia detection challenge

dataset (2020). The highest accuracy rate of 92.4% was

achieved. Hemdan et al. (2020) developed a deep learning

model, termed as COVIDX-Net to diagnose the COVID-19

virus through the analysis of chest X-ray images. The

authors have tested the performance of seven diverse pre-

trained models (e.g., VGG19, DenseNet201, ResNetV2,

Xception, Inception, InceptionV3, and MobileNetV2)

using a relatively small dataset of 50 images (e.g., with 25

images with confirmed COVID-19 infection). The highest

accuracy rate of 91% was achieved using the pre-trained

DenseNet201 model. Narin et al. (2020) assessed the

COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays…
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performance of three pre-trained models (InceptionV3,

ResNet50, and Inception-ResNetV2) using a small dataset

consists of 100 X-ray images (e.g., 50 images of confirmed

COVID-19 infection). The highest accuracy rate of 98%

was obtained using the ResNet50 model. Mohammed and

et al. (2020) developed a novel benchmarking method to

choose the best COVID-19 detection model by using the

Entropy and TOPSIS method and established a decision

matrix of 10 evaluation criteria and 12 machine learning

classifiers for identifying COVID-19 infection in 50 X-ray

images. The highest closeness coefficient of 98.99% was

achieved by the linear SVM classifier. Several convolu-

tional neural network (CNN) models as feature descriptors

were also trained by Kassani et al. (2020) to encode the

input image into lower dimensional feature vectors. Then,

these extracted feature vectors were fed into different

classifiers to produce the final decision. Their performance

has been tested using the same dataset presented in Cohen

et al. (2020). The highest accuracy rate was 99% using the

pre-trained DenseNet121 model as a features descriptor

and the Bagging tree classifier. Zhang et al. (2020)

employed a pre-trained ResNet18 model as a feature

descriptor to extract discriminative features from the X-ray

images. Then, these obtained features were processed by a

multi-layer perception to produce the final decision. The

highest accuracy rate of 96.00% was obtained using a

dataset of 100 images captured from 70 patients with

COVID-19 virus (Castillo and Melin 2020) developed a

novel intelligent approach for forecasting COVID-19 time

series by merging the advantages of the fractal dimension

theory and fuzzy logic. In this hybrid approach, the linear

and nonlinear fractal dimensions of the time series were fed

into set of fuzzy rules to provide the forecast for the dif-

ferent countries based on their time series of confirmed

COVID-19 infected and death cases. The proposed fuzzy

model was built using a fixed period time series of 10

different countries, and then its reliability was tested using

other periods of time series. The highest forecasting aver-

age accuracy of 98% was achieved. An interesting analysis

of the spatial aspect of COVID-19 pandemic using unsu-

pervised neural network, named as self-organizing maps,

was presented by Melin et al. (2020). The authors proposed

an efficient procedure using unsupervised self-organizing

Kohonen maps to group together all the countries that have

similar patterns of the COVID-19 cases. This procedure

could be very helpful and essential in determining the best

strategies for fighting against the COVID-19 epidemic in

the countries that have similar patterns of infected COVID-

19 cases. A comparison study between three different

models (e.g., VGG-19, Inception_V2 and decision tree

model) was presented by Dansana et al. (2020) to address

the binary classification pneumonia task. Initially, the noise

level in the input image was reduced using a feature

detection kernel to generate compact feature maps. These

feature maps were fed as input to the adopted deep learning

models. The best accuracy rate of 91% was achieved using

VGG-19 compared to 78% and 60% be achieved by

Inception_V2 and decision tree model, respectively.

Finally, other examples of applying different deep learning

approaches for detecting COVID-19 virus can be found in

Farooq and Hafeez (2020), Ghoshal and Tucker (2020),

Kumar and Kumari (2020) and Gozes et al. 2020). This

review on COVID-19 detection systems shows that most of

the existing deep learning-based systems are limited to use

the raw images data as an input to train the adopted deep

learning models, which can affect the generalization ability

of the last obtained model. Herein, we proposed to train the

adopted deep learning models on the top of the pre-pro-

cessing images data instead of direct usage of raw data to

decrease the generalization error of the last trained model

and avoid the overfitting issues. Furthermore, the perfor-

mance of most of the existing systems has been validated

using a very small dataset with a few images of COVID-19

infected cases, which is not sufficient to reveal the real

performance of the proposed approaches. To overcome this

limitation a large-scale and challenging dataset, termed as

the COVID19-vs-normal dataset was created and used to

evaluate the performance of the adopted deep learning

models (See Sect. 3.1).

3 Proposed COVID-CheXNet system

In this section, a novel hybrid deep learning framework is

proposed, termed as the COVID-CheXNet system for

diagnosing COVID-19 virus in chest X-rays images by

combining the results generated from two different deep

learning methods (e.g., ResNet34 and HRNet). First, the

adopted procedure to create the COVID19-vs-normal

dataset is briefly described. Then, the implementation

details of the proposed approaches are explained, including

the proposed image enhancement procedure, the main

architecture and training methodology of the employed

deep learning models (e.g., ResNet34 and HRNet). Fig-

ure 2 shows the block diagram of the proposed COVID-

CheXNet system for diagnosing COVID-19 virus in chest

X-rays images.

3.1 COVID19-vs-normal dataset description

In this study, several X-ray images were carefully selected

from different sources to create a relatively large-scale

COVID-19 X-ray images dataset of confirmed infected

cases. This dataset was termed as COVID19-vs-normal

dataset and then mixed with some X-ray images of normal

cases to be used for a more reliable diagnosis of COVID-19

A. S. Al-Waisy et al.
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virus. The sources of the COVID19-vs-normal dataset are

as follows:

• A number of 200 X-ray images with confirmed

COVID-19 infection of Cohen’s GitHub repository

(Cohen et al. 2020).

• A number of 200 COVID-19 X-ray images with

confirmed COVID-19 infection gathered from three

different sources: Radiopaedia dataset (2020), Italian

Society of Medical and Interventional Radiology

(SIRM) (2020), and Radiological Society of North

America (RSNA) (2020).

• A number of 400 chest X-ray images of normal

condition was collected from Kaggle’s chest X-ray

images (Pneumonia) dataset (2020).

Samples of the COVID-19 and normal cases of the

large-scale COVID-19 X-ray images are shown in Fig. 3.

The number of the COVID-19 cases will continuously be

updated accordingly with the availability of new X-ray

images with confirmed COVID-19 infection, and the whole

dataset is available publicly for academic research pur-

poses at https://github.com/AlaaSulaiman/COVID19-vs-

Normal-dataset. In this work, a data augmentation proce-

dure was applied to avoid the overfitting problem and

increase the generalization ability of the last trained model.

Firstly, the size of the original image was rescaled to

(224 9 224) pixels, and then 5 random image regions of

size (128 9 128) pixels were extracted from each image.

This is followed by applying the horizontal flip and rotation

5 degrees (e.g., clockwise and counter-clockwise) for every

single image in the dataset. Therefore, a total of 24,000

X-ray images of size (128 9 128) pixels were extracted

from both classes (e.g., COVID-19 and normal images).

The data augmentation procedure was implemented after

dividing the COVID19-vs-normal dataset into three

mutually exclusive sets (e.g., training, validation, and

testing set) to avoid producing biased detection results.

3.2 Proposed image enhancement procedure

A raw chest X-ray image captured directly using a digital

detector have a very poor image quality, which makes it

inappropriate for diagnosis and treatment assessment pur-

poses. To enhance the poor quality of the X-ray image,

some image enhancement methods should be applied.

Furthermore, training the DNNs on top of pre-processed

images instead of using raw images data, as a form of

supervising the learning process, can significantly enhance

the generalization ability of the DNNs and learn more

distinctive feature representations with less time needed to

obtain the best-trained model. Thus, an efficient image

enhancement process is implemented to enhance the poor

quality of the X-ray images before feeding them to the

proposed deep learning approaches. Firstly, the small

details, textures, and low image contrast of the X-ray image

was enhanced by applying an adaptive contrast enhance-

ment method using CLAHE (Zuiderveld 1994). CLAHE is

different from the original histogram equalization method

where several histograms are computed (e.g., each one

corresponding to a distinct part of an image) to redistribute

the lightness values of the input image, as shown in

Fig. 4b. Hence, the CLAHE method can enhance the image

local contrast and enhance the visibility of edges and

curves in each part of an image. Secondly, the Butterworth

Fig. 2 Block diagram of the

proposed COVID-CheXNet

system for diagnosing COVID-

19 pneumonia in chest X-rays

images

COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays…
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bandpass filter was applied to eliminate the noise level in

the image produced from the previous step, as shown in

Fig. 4c. The Butterworth bandpass filter ðHBPÞ was calcu-
lated by multiplying the low and high pass filter as follows:

HLP u; vð Þ ¼ 1

1þ F u; vð Þ=FL½ �2n
ð1Þ

HHP u; vð Þ ¼ 1� 1

1þ F u; vð Þ=FH½ �2n
ð2Þ

HBP u; vð Þ ¼ HLP u; vð Þ � HHP u; vð Þ ð3Þ

where HLP and HHP refer to output of the low and high pass

filter, respectively. FL and FH are the cut frequencies of the

low and high pass filter and set to be 15 and 30, respec-

tively; n ¼ 3 is the filter order and is F u; vð Þ the distance

from the origin.

3.3 COVID-19 detection with transfer learning

The transfer learning strategy has been successfully applied

to address many deep learning issues arising from the

unavailability of sufficient labeled training data. Several

studies have proved the advantages of transfer learning in

improving the performance of DNNs and solving many

challenging problems in computer vision (Lu et al. 2019).

In practical applications, rather than training a DNN from

scratch, the transfer learning strategy aims to improve their

performance by transferring the knowledge (e.g., weights)

already learned on a large-scale dataset of a different task

to the current task in hand (Shallu and Mehra 2018). This

will enable the DNNs to learn general feature representa-

tions (e.g., edges, curves, corners, etc.) from the dataset of

the initial task that cannot be learned due to the limited

amount of the training data in the current task. In this work,

Fig. 3 Some samples of normal and COVID-19 infected cases from the created COVID19-vs-normal dataset

Fig. 4 Proposed image enhancement procedure outputs: a A raw X-ray image, b applying the CLAHE method, and c applying the Butterworth

bandpass filter

A. S. Al-Waisy et al.
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the transfer learning strategy to pre-trained ResNet34 and

HRNet model was applied for several reasons, including:

(1) to avoid the overfitting problem due to unavailability of

sufficient chest X-ray images, especially images with

confirmed COVID-19 infection, (2) to reduce the compu-

tational complexity during the training process, and (3) to

increase the prediction accuracy of the proposed COVID-

CheXNet system. The main architecture and implementa-

tion details of the employed deep learning models are

explained in the next subsections.

3.3.1 ResNet34 model

Herein, transfer learning to the pre-trained ResNet34 model

on the ImageNet dataset was applied to improve the

accuracy of detecting COVID-19 virus in the X-ray ima-

ges. The residual network (ResNet) is a powerful deep

CNNs (He et al. 2016). ResNet is almost similar to other

CNNs models, which have convolutional, pooling, activa-

tion maps and fully connected layers stacked sequentially

one over the other. The only main difference between the

ResNet and the other CNNs models is the identity con-

nection, which links the input layer with the end of the

residual block, as shown in Fig. 5b. The ResNet34 archi-

tecture starts by performing a convolutional and max-

pooling operation using kernels of size (7 9 7) pixels and

(3 9 3) pixels, respectively. Afterward, a different number

of residual blocks were implemented within four stages, in

which trainable kernels of size (3 9 3) pixels were used to

perform the convolutional operation, as shown in Table 1.

As one moves from one stage to the next one, the channel

depth was doubled and the input image size was reduced to

half. In this work, the employed ResNet34 model has an

average pooling layer followed by one fully connected

layer of only two neurons to represent the predicted classes

(e.g., normal and COVID-19). In the learning process, the

weights of the pre-trained ResNet34 model were used as an

initial step, and then they were fine-tuned using Adam

optimizer over the current training set. The main idea is

that the pre-trained ResNet3 model has a deep knowledge

about detecting different types of feature representations

(e.g., edges, curves, corners, etc.), and by fine-tuning its

parameters this will enable the Resnet34 model to quickly

learn the specific feature representations of the current task.

3.3.2 HRNet model

A high-resolution network (HRNet) is a DNN developed

by Sun et al. (2019). It starts from high-resolution in the

first subnetworks, and then gradually high-to-low resolu-

tion subnetworks were added one after another to create

more branches. These added multi-resolution subnetworks

are connected in parallel. Next, repeated multi-scale

fusions were implemented to exchange the data between

parallel subnetworks in order to strength the high-resolu-

tion representations. The HRNet has successfully applied

to address many challenging problems in the computer

vision field, such as object detection, human pose estima-

tion, semantic segmentation, and facial landmark detection

(Sun et al. 2019; 2020a, b; Sun et al. 2019; Cheng et al.

2020). As depicted in Fig. 6, the main architecture of

HRNet consists of four stages with four subnetworks

connected in parallel. The resolution of these connected

subnetworks is gradually decreased to a half while the

number of feature maps (channels) is doubled. The first

stage consists of four residual blocks where each block was

formed by a bottleneck with 64 channels (width). This is

followed by applying one convolution operation using

kernel of size (3 9 3) pixels to reduce the width of feature

maps to C = 32. The other three stages consist of (1, 4, and

3) multi-resolution blocks (exchange blocks), respectively.

Each exchange block consists of four residual block where

each block has two convolutional layers of (3 9 3) pixels

Fig. 5 The difference between: a regular block and b residual block

Table 1 The ResNet34 architecture details

Layer name ResNet34

Conv-1 7 9 7, 64 stride 2

Pool-1 3 9 3 Max-Pooling stride 2

Stage-1 3� 3; 643� 3; 64½ � � 3

Stage-2 3� 3; 1283� 3; 128½ � � 4

Stage-3 3� 3; 2563� 3; 256½ � � 6

Stage-4 3� 3; 5123� 3; 512½ � � 3

Poo1-2 Average pooling, stride 1

Fc 2-d, Softmax

COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays…
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in each resolution. In general, there are totally eight

exchange blocks, which means eight multi-scale fusions

are performed ( Wang et al. 2020a, b).

In this work, to perform a classification task, the pre-

trained HRNets model on the ImageNet dataset was aug-

mented with a classification head by feeding the four-res-

olution feature representations of the last stage into a

bottleneck and increasing their width (the number of

channels) to 128, 256, 512, and 1024, respectively. Then,

the high-resolution maps were down-sampled by per-

forming two strided convolutional operations of (3 9 3)

pixels producing 256 width, and they were added to the

representations of the second high-resolution representa-

tions. The same process was repeated two times to obtained

1024 channels over the small resolution. Finally, a

2048-dimensional vector was generated by performing one

convolutional operation of (1 9 1) pixels to on the top of

1024 channels, followed by an average pooling layer. This

last obtained feature vector was fed into the softmax

classifier to produce the final decision and assign the input

image to one of the predicted classes (e.g., normal and

COVID-19).

3.4 Training methodology

To ensure the effectiveness of the proposed training

methodology, all of the experiments were conducted by

using 70% randomly selected X-ray images as a training

set to train the proposed deep learning models (e.g.,

ResNet34 and HRNet), while the reset 30% were used as a

testing set to report the final performance of the best-

trained models. During the learning process, 10% was

chosen randomly from the training set and employed as a

validation set to assess the generalization ability of the

model and store the configuration of the weights that pro-

duce a minimum error rate on the validation set. The fol-

lowing steps summarized the training methodology of the

proposed deep learning models (e.g., ResNet34 and

HRNet):

1. Dividing the dataset into a training set, validation set,

and test set.

2. Selecting initial values for a set of the hyper-param-

eters (e.g., momentum, learning rate, weight decay,

etc.).

3. Training the network using the training and hyper-

parameters sets in 2.

4. Using the validation set to evaluate the performance of

the network during the training process.

5. Repeating steps 3 and 4 for 10 epochs.

6. Selecting the best-trained model with the highest

validation accuracy rate.

7. Using the testing set to report the real performance of

the best-trained model.

3.5 Evaluation criteria

In the prediction phase, the average values of seven

quantitative performance measures were computed to

assess the reliability of the COVID-CheXNet system using

the testing set, including detection accuracy rate (DAR),

sensitivity, specificity, precision, F1-score, mean squared

error (MSE), and root-mean-squared error (RMSE). These

seven quantitative performance measures are calculated as

follows:

DAR ¼ TPþ TNð Þ
TPþ TNþ FPþ FNð Þ ð4Þ

Sensitivity Recallð Þ ¼ TPð Þ
TPþ FNð Þ ð5Þ

Specificity ¼ TNð Þ
TNþ FPð Þ ð6Þ

Precision ¼ TPð Þ
TPþ FPð Þ ð7Þ

F1 Score ¼ 2 � Precision � Recallð Þ
Precisionþ Recallð Þ ð8Þ

Here, TP = true positives, TN = true negatives, FP = false

positives, and FN = false negatives.

MSE ¼ 1

n

Xn

i¼1

Yi � Ŷi
� �2 ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Yi � Ŷi
� �2

s
ð10Þ

Here, n stands for the total number of data samples, Y

the vector of observed values of the variable being pre-

dicted, and bY being the vector of predicted values.

Fig. 6 The main architecture of the HRNet model
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4 Experimental results

In this section, several extensive experiments on the

COVID19-vs-normal dataset were carried out to validate

the efficiency of the proposed deep learning models (e.g.,

ResNet34 and HRNet), along with their combination (e.g.,

using different fusion rules in the score-level fusion and

decision-level fusion) and compare their performances

with the current state-of-the-art COVID-19 detection sys-

tems. The proposed COVID-CheXNet system code was

written using Python programming language and trained on

a Google Colaboratory server using Windows 10 operating

system, 69 K GPU graphics card, and 16 GB of RAM.

4.1 Training details of deep learning models

The hyper-parameters of the best-trained models (e.g.,

ResNet34 and HRNet) used in the proposed COVID-

CheXNet System are presented in Table 2. As mentioned

before, the ResNet34 model was pre-trained on the Ima-

geNet dataset and its weights values fine-tuned on the

created COVID19-vs-normal dataset via transfer learning

strategy. All the weights were updated using Adam’s

optimization method along with a learning rate adaptation

strategy, in which the learning rate value was decreased by

a factor of 0.7 when the learning stagnates during the

learning process (‘patience policy’). Following the pro-

posed training methodology, the number of epochs, learn-

ing rate, momentum value, dropout ratio, and batch size

were experimentally set to 10, 0.01, 0.95, 0.5, and 100,

respectively. Table 3 shows the values of the training and

validation loss beside the time in seconds and accuracy

rates for each epoch. From this table, a gradual decrease in

both the training and validation loss was observed with a

significant increase in the accuracy rate on the validation

set. This can be attributed to the generalization ability of

the pre-trained ResNet34 to quickly learn more discrimi-

native feature representations from the chest X-ray images.

The curve of the loss value against the log scale of the

learning rate to find a perfect order of magnitude of the

learning rate is shown in Fig. 7. The value that approxi-

mately falls in the middle of the sharpest downward slope

was selected as the adopted learning rate to train the

ResNet34 model.

Following the same training methodology described

above, the HRNet model was trained on the top of the

COVID19-vs-normal dataset and its weights were updated

using SGD optimizer along with a learning rate of 0.01,

weight decay of 0.0005, momentum value of 0.9, dropout

ratio of 0.5, batch size of 100 and a learning rate adaptation

strategy with the power of 0.9 was applied for decreasing

the learning rate. Initially, the HRNet model was trained

for 10 epochs; however, it was noticed that the perfor-

mance of the HRNet model can be further advanced by

increasing the number of epochs. Hence, the number of

epochs was set to around 20 epochs using the early stop-

ping procedure. Figure 8 shows the curve of the loss of the

loss value against the batches processed in the training and

validation sets for both adopted deep learning models (e.g.,

ResNet34 and HRNet). From this figure, one can see that

the training loss was far higher than validation loss that

shows under-fitting. However, with more numbers of bat-

ches were processed the curves of both losses become

almost equal, which refers to the ideal status of an excellent

model.

4.2 Learning useful feature representations

In this section, several extensive experiments were con-

ducted to demonstrate the significant contribution of the

Table 2 The hyper-parameters of the best-trained models (e.g.,

ResNet34 and HRNet) used in the proposed COVID-CheXNet system

ResNet34 model HRNet model

Hyper-parameters Values Hyper-parameters Values

Optimizer Adam Optimizer SGD

Momentum 0.95 Momentum 0.9

Weight decay 0.0005 Weight decay 0.0005

Batch size 100 Batch size 100

Dropout 0.5 Dropout 0.5

Learning rate 0.01 Learning rate 0.01

Factor 0.7 Factor 0.9

Patience 5 Patience 5

Total no. of epochs 10 Total no. of epochs 20

Table 3 The values of the training and validation loss beside the time

in seconds and accuracy rates for each epoch

Epoch Train loss Valid loss Accuracy Time (s) per epoch

0 0.33995 0.22055 0.956 04:45

1 0.32598 0.19004 0.957 04:45

2 0.32001 0.14345 0.962 04:45

3 0.28002 0.12234 0.965 04:45

4 0.25577 0.11455 0.971 04:45

5 0.22955 0.10553 0.974 04:45

6 0.19924 0.10455 0.980 04:45

7 0.09404 0.01455 0.985 04:45

8 0.03495 0.00345 0.986 04:45

9 0.01403 0.00155 0.989 04:45
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employed image enhancement procedure in guiding the

learning process of the adopted deep learning models to

learn more powerful and useful feature representations and

increasing the DAR of the proposed adopted deep learning

models compared with direct use of the raw images data.

Firstly, the adopted learning models were separately

trained using two different image datasets (e.g., raw images

data and pre-processed images data) by following the same

training methodology described in (Sect. 3.4). Then, given

a total of 7200 X-ray images (e.g., 3600 normal and 3600

positive COVID-19 infected images) in the testing set, the

efficiency of the obtained trained models was quantita-

tively assessed by computing the average values of seven

quantitative measures for both classes (e.g., Normal and

COVID-19 class). As shown in Table 4, the proposed deep

learning models (e.g., ResNet34 and HRNet) have

achieved better results by training them on the top of the

pre-processed chest X-ray images compared with the direct

usage of the raw images data. The ResNet34 model has

managed to diagnose the COVID-19 patients with a DAR

of 97.02%, sensitivity of 98.41%, specificity of 95.72%,

precision of 95.60%, F1-score of 96.98%, MSE of 0.061%,

and RMSE of 0.073%. On the other hand, a DAR of

98.68%, sensitivity of 98.72%, specificity of 98.63%,

precision of 98.63%, F1-score of 98.68%, MSE of 0.032%,

and RMSE of 0.042% was achieved by the HRNet model

using pre-processing images data as an input. It is worthy

to mention that the high precision values of 95.60% and

98.63% achieved by ResNet34 and HRNet model,

respectively, it is extremely crucial to reduce the number of

misclassified healthy cases, as COVID-19 infected cases.

Secondly, the ROC curves were plotted by computing the

true positive ratio (TPR) and false positive ratio (FPR) for

different accuracy thresholds, as shown in Fig. 9. From this

figure, one can see that the proposed ResNet34 and HRNet

models have managed to achieve an area under the ROC

curve (AUC) of 81% and 88% using the raw X-ray images

data compared with AUC of 99% and 100% using pre-

processing images, respectively.

Finally, the confusion matrices of the normal and

COVID-19 infected test results using the adopted deep

learning models are shown in Fig. 10. It was observed that

using the raw images data as an input to train the ResNet34

model, 770 (9.16%) COVID-19 infected images have

misidentified as healthy images and 930 (11.07%) healthy

images have misclassified as they containing COVID-19

virus. In contrast, 370 (4.4%) COVID-19 infected images

have misidentified as healthy images and 130 (1.54%)

healthy images have misclassified as COVID-19 positive

cases, by training the ResNet34 model on the top of the

pre-processed chest X-ray images. It was found that using

the raw images data, the HRNet model has misidentified

730 (8.68%) COVID-19 infected images as healthy images

and 950 (11.3%) healthy images as they containing

COVID-19 virus, whereas only 115 (1.36%) COVID-19

infected images have misidentified as healthy images and

107 (1.27%) healthy images have misclassified as they

containing COVID-19 virus by training the HRNet model

on the top of pre-processed images data. In general, a

Fig. 7 The curve of the loss against the log scales of the learning

rates, to find a perfect order of magnitude of the learning rate

Fig. 8 The curve of the loss against the batches processed in the training and validation sets: a ResNet34 model, and b HRNet model
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slightly better results were obtained using the HRNet

model compared with the ResNet34 model.

4.3 Fusion rule evaluation

The final decision of the proposed COVID-CheXNet sys-

tem is made by combining the results generated from two

different deep learning models (e.g., ResNet34 and

HRNet). Every time an X-ray image is assigned to the

proposed COVID-CheXNet system, two predicted proba-

bility scores are computed, and the highest probability

score is used to assign the input image to one of two classes

(e.g., either normal or COVID-19 class). In this section, the

results obtained from the ResNet34 and HRNet models

were combined and evaluated using different fusion rules

in the score-level fusion (e.g., using sum, weighted sum,

product, max, and min rule) and decision-level fusion (e.g.,

using AND OR rule). Additional information on how these

Table 4 The performance

evaluation metrics of the

proposed deep learning models

Quantitative measures Raw images Processed images

ResNet34 model HRNet model ResNet34 model HRNet model

DAR 89.88 90.00 97.02 98.68

Sensitivity (recall) 89.14 88.98 98.41 98.72

Specificity 90.66 91.08 95.72 98.63

Precision 90.83 91.31 95.60 98.63

F1-Score 89.98 90.13 96.98 98.68

MSE 0.154 0.121 0.061 0.032

RMSE 0.216 0.136 0.073 0.042

Fig. 9 ROC curves for the proposed deep learning models trained on

two different datasets: a ResNet34 model trained using raw images,

b HRNet model trained using raw images, c ResNet34 model trained

using pre-processing X-ray images, and d, c HRNet model trained

using pre-processing X-ray images
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fusion rules are implemented in both levels can be found in

(Jain et al. 2007). In the proposed COVID-CheXNet sys-

tem, the parallel architecture was considered, which pro-

vides radiologists a high degree of confidence to make their

final decision and to accurately distinguish between healthy

and COVID-19 infected subjects. In the implementation of

the WSR at the score-level, slightly a higher weight value

was given to the HRNet model compared to the ResNet34

model due to a better performance was achieved by the

former model compared to the latter. Moreover, no nor-

malization process was required before applying the score

fusion rules due to both classifiers are generating the same

probability scores and within the same numeric range [0,

1]. Herein, the average values of seven quantitative per-

formance measures using various fusion rules at the score-

level and decision-level fusion, are presented in Tables 5

and 6, respectively. A significant enhancement in the

accuracy of the proposed hybrid COVID-CheXNet system

has been obtained compared with that of using the

ResNet34 or HRNet model alone. From Tables 5 and 6, it

can be noted that the highest values of the adopted seven

quantitative measures were obtained using the WSR and

the OR rule in the score-level fusion and decision-level

fusion, respectively. The proposed COVID-CheXNet

system can accurately diagnose the patients with COVID-

19 in the score-level fusion with a DAR of 99.99%, sen-

sitivity of 99.98%, specificity of 100%, precision of 100%,

F1-score of 99.99%, MSE of 0.011%, and RMSE of

0.012% using the WSR and in the decision-level fusion

using the OR rule with a DAR of 99.91%, sensitivity of

99.95%, specificity of 99.87%, precision of 99.87%, F1-

score of 99.91%, MSE of 0.014%, and RMSE of 0.016%.

The high precision value of 100% achieved in the score-

level fusion using the WSR is essential in reducing the

number of misclassified healthy cases as COVID-19 cases.

Finally, the two confusion matrices of the testing results

of for the proposed COVID-CheXNet system using the

WSR and OR rule are shown in Fig. 11. It was found that

using the WSR in the score-level fusion, only 2 (0.02%)

healthy images have been misclassified as if they contain

the COVID-19 virus. In contrast, 11 (0.13%) COVID-19

infected images have misclassified as healthy images and 4

(0.04%) healthy images have misclassified as they con-

taining COVID-19 virus using OR rule in the decision-

level fusion. Thus, the WSR was used in the performance

comparison process of the proposed COVID-CheXNet

system with current state-of-the-art systems, due to its

effectiveness in exploiting the strength of each classifier

compared to other fusion rules. These results obtained have

further strengthened our confidence in the possibility of

employing the proposed COVID-CheXNet system in real-

world settings to significantly moderate the workload of

radiologists and help them to accurately detect the COVID-

19 infection in the chest X-ray images.

4.4 Comparison study and discussion

The reliability and efficiency of the proposed COVID-

CheXNet system were compared with the most current

state-of-the-art COVID-19 detection systems. The first

three COVID-19 detection systems were evaluated on the

COVIDx dataset, which contains only 76 CX-R images

with confirmed COVID-19. The first system was developed

by Wang and Wong (2020). The authors used a deep tai-

lored designed model based on a CNN, termed as a

COVID-Net for detecting the COVID-19 virus in the chest

radiography images. The second system was proposed by

Farooq and Hafeez (2020). The authors have used a pre-

trained ResNet50 model, termed as a COVID-ResNet for

detecting the COVID-19 in the chest radiography images.

The third system was proposed by Luz et al. (2020). The

authors have assessed the performance of different archi-

tectures of EfficientNet using an updated version of the

COVIDx dataset that contains 183 chest radiography

images with confirmed COVID-19. The performances of

these three systems were evaluated by computing four

quantitative measures (e.g., accuracy, sensitivity, precision,

Fig. 10 Confusion matrices for the proposed deep learning models

trained on two different datasets: a ResNet34 model trained using raw

images, b HRNet model trained using raw images, c ResNet34 model

trained using pre-processing X-ray images, and d, c HRNet model

trained using pre-processing X-ray images
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and F1-score) for three different classes (e.g., normal,

none-COVID19, and COVID-19). For a fair comparison,

the average value of these four quantitative measures was

adopted and is shown in Table 7. It can be seen that the

proposed COVID-CheXNet system obtains better results

compared with these three COVID-19 detection systems.

Although the EfficientNet-B3 model described in (Luz

et al. 2020) achieved the same precision of 100%, the

proposed COVID-CheXNet system has managed to pro-

duce better results on the other two terms (e.g., accuracy

and sensitivity) using a larger dataset containing more

chest X-ray images with confirmed COVID-19. Another

comparison study between three different CNN models

(e.g., ResNet50, InceptionV3, and Inception-ResNetV2)

was presented by Narin et al. (2020) to detect COVID-19

infected patients using chest X-ray images. The authors

calculated the mean values of five different quantitative

measures (e.g., accuracy, recall, specificity, precision, and

F1-score) using a fivefold cross-validation procedure to

assess the performance of the three adopted models. The

best performance was obtained using the pre-trained

ResNet50 model with a DAR of 98%, sensitivity of 96%,

specificity of 100%, precision of 100%, and F1-score of

98%. Although the ResNet50 model has achieved the same

specificity and precision compared with the proposed

COVID-CheXNet system, it achieved inferior results in

terms of other quantitative measures, as shown in Table 8.

These findings confirm the usefulness of the proposed

image enhancement procedure as well as the transfer

learning strategy to improve the prediction accuracy of the

proposed COVID-CheXNet system by successfully

Table 5 Performance

comparison of the proposed

hybrid COVID-CheXNet using

five different rules in score-level

fusion

Evaluation criteria ResNet34 HRNet Score fusion rules

SR WSR PR Max Min

DAR 97.02 98.68 98.33 99.99 97.99 98.84 97.23

Sens.(recall) 98.41 98.72 98.86 99.98 97.85 98.71 97.62

Specificity 95.72 98.63 97.84 100 97.23 98.64 97.82

Precision 95.60 98.63 97.81 100 97.93 97.98 97.75

F1 Score 96.98 98.68 98.93 99.99 98.82 98.59 97.53

MSE 0.061 0.032 0.099 0.011 0.091 0.052 0.067

RMSE 0.073 0.042 0.034 0.012 0.041 0.047 0.036

Table 6 Performance comparison of the proposed hybrid COVID-

CheXNet system using two different rules in decision-level fusion

Evaluation criteria ResNet34 HRNet Decision fusion rules

AND OR

DAR 97.02 98.68 97.83 99.91

Sens.(recall) 98.41 98.72 97.76 99.95

Specificity 95.72 98.63 98.78 99.87

Precision 95.60 98.63 98.82 99.87

F1 Score 96.98 98.68 97.84 99.91

MSE 0.061 0.032 0.039 0.014

RMSE 0.073 0.042 0.028 0.016

Fig. 11 Confusion matrices for the proposed COVID-CheXNet

system using different fusion rules: a WSR rule in the score-level

fusion, and b OR rule in the decision-level fusion

Table 7 Performance comparison between the proposed COVID-CheXNet system and three current state-of-the-art COVID-19 detection

systems evaluated on the COVIDx dataset

Quantitative

measures

Proposed COVID-

CheXNet system

COVID-Net (Wang and

Wong 2020)

COVID-ResNet (Farooq and

Hafeez 2020)

EfficientNet-B3 (Luz

et al. 2020)

Accuracy 99.99 92.4 96.23 93.9

Sens. (recall) 99.98 88.6 96.92 96.8

Precision 100 91.3 96.86 100

F1 Score 99.99 – 96.88 –
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transferring the knowledge from the source dataset (Ima-

geNet) to the current task despite the small size of chest

X-ray images dataset. In addition to the possibility of

employing the COVID-CheXNet system in real-world

clinical settings to reduce the pressure on the radiologists in

clinical practice, with less than 2 s per image required to

obtain the prediction result. Although the proposed

COVID-CheXNet system has managed to achieve satisfy-

ing performance with a DAR of 99.99%, it is limited to

classify the input chest X-ray image into only two classes

either normal or COVID-19. Thus, the number of predicted

classes can be extended by adding chest X-ray images with

other types of pneumonia (e.g., bacterial pneumonia and

viral pneumonia). Further experiments need to be con-

ducted using a large scale dataset with more chest X-ray

images with confirmed COVID-19 infection to prove the

effectiveness of the proposed COVID-CheXNet system.

5 Conclusions and future work

This study has investigated the potential of using some

efficient image processing and deep learning approaches to

build an accurate and real-time diagnostic system, termed

as COVID-CheXNet system for COVID-19 virus in the

X-rays images. Using the proposed COVID-CheXNet

system, the poor image quality was enhanced and the noise

level was reduced by applying the CLAHE method and

Butterworth bandpass filter, respectively. Then, two dis-

criminate deep learning models (e.g., ResNet34 and

HRNet) were trained on the top of the pre-processed chest

radiography images to increase the generalization ability of

the last trained model and avoid the overfitting problem.

The performance of the COVID-DeepNet system was

tested by creating a large-scale X-ray images dataset, ter-

med as the COVID19-vs-normal dataset. The proposed

COVID-CheXNet system has managed to achieve com-

parable performance with expert radiologists with a DAR

of 99.99%, sensitivity of 99.98%, specificity of 100%,

precision of 100%, F1-score of 99.99%, MSE of 0.011%,

and RMSE of 0.012% using the WSR in the score-level

fusion. This research could alleviate the pressure on deci-

sion-makers (e.g., radiologists and clinicians) caused by the

increased number of COVID-19 patients compared with

the shortage of medical resources. Further experiments will

be required to prove the efficacy and accuracy of the pro-

posed COVID-CheXNet system by using a larger and more

challenging dataset contains more chest X-ray images with

conformed COVID-19 infection and other types of pneu-

monia (e.g., bacterial pneumonia and viral pneumonia).

This is an important and vital issue for future research.
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