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Abstract: The discrimination of non-focal class (NFC) and focal class (FC), is vital in localizing the
epileptogenic zone (EZ) during neurosurgery. In the conventional diagnosis method, the neurologist has
to visually examine the long hour electroencephalogram (EEG) signals, which consumes time and is
prone to error. Hence, in this present work, automated diagnosis of FC EEG signals from NFC EEG
signals is developed using the Fast Walsh–Hadamard Transform (FWHT) method, entropies, and artificial
neural network (ANN). The FWHT analyzes the EEG signals in the frequency domain and decomposes
it into the Hadamard coefficients. Five different nonlinear features, namely approximate entropy (ApEn),
log-energy entropy (LogEn), fuzzy entropy (FuzzyEn), sample entropy (SampEn), and permutation
entropy (PermEn) are extracted from the decomposed Hadamard coefficients. The extracted features
detail the nonlinearity in the NFC and the FC EEG signals. The judicious entropy features are supplied
to the ANN classifier, with a 10-fold cross-validation method to classify the NFC and FC classes.
Two publicly available datasets such as the University of Bonn and Bern-Barcelona dataset are used to
evaluate the proposed approach. A maximum sensitivity of 99.70%, the accuracy of 99.50%, and specificity
of 99.30% with the 3750 pairs of NFC and FC signal are achieved using the Bern-Barcelona dataset,
while the accuracy of 92.80%, the sensitivity of 91%, and specificity of 94.60% is achieved using University
of Bonn dataset. Compared to the existing technique, the proposed approach attained a maximum
classification performance in both the dataset.

Keywords: fast Walsh–Hadamard transform; feature extraction; entropy; classification; artificial
neural network

1. Introduction

Epilepsy is a nervous system syndrome originated by the frequent occurrence of the seizures [1]
owing to the sudden abnormal flow of electrical activity in the central nervous system which results
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in unconsciousness, disability in body movement [2], and also sudden unexpected death in epilepsy
(SUDEP) that occurs one in 1000 adults and one in 4500 children each year. According to the International
League Against Epilepsy (ILAE), drug-resistant epilepsy is referred to as the epileptic seizures which are
unresponsive to the antiepileptic drugs and which results in the treatment through surgery. About more
than 60% of the drug-resistant patients are affected with focal epilepsy, which affects the particular
section of the neural system, whereas 20% of drug-resistant patients have generalized epilepsy; all parts
of the brain are influenced [3]. The estimation of the epileptogenic zone (EZ) before the surgical
procedure is a primary requirement for the neurosurgeons.

The electroencephalogram (EEG) is non-invasive clinical equipment to screen the characteristics
of the encephalon activity [4] by attaching the electrodes on the scalp over a certain duration known
as scalp EEG whereas implanting electrodes in the cerebrum before the surgical treatment is known
as intracranial EEG. The conventional EEG-based approach for epileptic diagnosis and estimation of
EZ needs tiresome manual inspection of EEG signals done by eminently qualified neurologists [5],
hence an increasing demand to automate it is on the rise. In recent years, to assist the neurologists
in identifying the EZ, many computer-aided automated diagnosis tools have been developed using
signal processing techniques and machine learning algorithms.

In literature, various machine learning [6] methodologies have been proposed [7] for health care
problems [8,9] to provide a solution. Various entropy measures with the combination of classifiers
were introduced to provide the classification of non-focal class (NFC) and focal class (FC) EEG signals
in the Bern-Barcelona (BB) dataset [10]. In [11], 15 levels of flexible analytic wavelet transform (FAWT)
were used for the EEG signal decomposition into different sub-bands, and the entropy measures
were computed from every sub-band to classify the signals, which attained 94.41% classification
accuracy with least-square support vector machine (LS-SVM) classifier. In [12], authors computed
the sample entropy (SampEn), Reyni’s entropy (RE), and approximate entropy (ApEn) from EEG
signals, and fed it into Non-Nested Generalized Exemplars classifier (NNge) for discriminating the
NFC and FC, which achieved an accuracy of 98%. In [13], authors achieved an accuracy of 94.5%
using LS-SVM classifier, with the extracted entropy features from the decomposed sub-bands using
the orthogonal wavelet filter banks, which are based on the time-frequency domain. In [14], the
neighborhood component analysis (NCA) with support vector machine (SVM) attained the sensitivity
of 97.6%, the accuracy of 96.1%, and specificity of 94.4% in distinguishing the NFC and FC EEG signals.

In [15], empirical mode decomposition (EMD) was employed for the decomposition of the signals
into various intrinsic mode functions (IMF), and log energy (LogEn) entropy feature was extracted
from each IMF. An accuracy of 89.4% was achieved using the k-nearest neighbor (k-NN) classifier with
the computed features. In [16], tunable-Q wavelet transform (TQWT) was used to classify the NFC
and FC with the LS-SVM classifier. In [17], four different classifiers were used with the differential
entropy feature vector for classification of NFC and FC. Among these, the random forest (RF) classifier
attained specificity of 95%, accuracy of 78.5%, and sensitivity of 95%. In [18], discrete wavelet transform
(DWT) with level six and feature ranking methods was used for discriminating the NFC and FC.
In [19], the TQWT was employed to decompose the EEG signals, and the LS-SVM classifier with the
entropy features provided better discrimination of NFC and FC EEG signals. In [20], the 50 pairs of
NFC and 50 pairs of FC EEG signals were used to evaluate the performance of entropy measures
in discrimination of NFC and FC. In [21], the empirical wavelet transform (EWT) was employed to
analyze the NFC and FC EEG signals. In [22], EMD with entropy features and LS-SVM was employed
to discriminate 3750 pairs of NFC and FC EEG signals. In [23], the author used DWT to analyze the EEG
signals and various coefficients decomposed, and from each coefficient, the statistical data as features
were extracted. The University of Bonn dataset and the BB dataset were used to evaluate the DWT with
the statistical feature approach in the classification of NFC and FC EEG signals, with SVM classifier.
For the University of Bonn database, an accuracy of 88%, and for the BB dataset, an accuracy of 83.74%
was achieved. In [24], multiple features and SVM classifiers were employed for the classification
of NFC and FC. This method achieved an accuracy of 92.15%, sensitivity of 94.56%, and specificity
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of 89.74%. In [25], delay PermEn method and SVM classification were performed to localize the
EZ. The adaptive neuro-fuzzy inference system (ANFIS) classifier was used to discriminate the NFC
and FC cases using the extracted features, which achieved 100% specificity, 99% accuracy, and 98%
sensitivity [26]. In [27], Filter banks were applied to obtain different frequency bands from the signals,
and they attained an accuracy of 89.7% for 50 pairs and 89.52% for 750 pairs of NFC and FC EEG signals
with LS-SVM classifier, respectively. In [28], the extracted entropy features were fed into the LS-SVM
classifier to characterize the FC signal and achieved an accuracy of 82%. In [29], FAWT was developed
to decompose the EEG signal into several sub-bands, and fractal dimension features were extracted.
The obtained features were classified by a classifier. In [30], a complex wavelet transform (CWT) was
applied, and statistical features were supplied into the ANFIS classifier to classify NFC and FC. In [31],
DWT was used for the extraction of the features where the optimum features were selected from the
extracted statistical features by engaging the genetic algorithm (GA). The comparative study of three
different classifiers in distinguishing the NFC and FC was studied.

In [32], an unsupervised methodology of NFC and FC classification performed by autoregressive
(AR) modeling, the non-parametric statistical test was performed to provide efficient classification.
In [33], energy measures and entropies were analyzed from the differential operation of the EEG
signal, those features were fed into SVM for classification, and they got an accuracy of 88.14%. In [34],
they used a bivariate EMD to classify NFC and FC signals. Entropy features were extracted, and those
were given to the SVM and achieved 86.89% of accuracy. In [35], they used three distinct deep
neural networks such as LeNet, AlexNet, and GooLeNet to discriminate NFC and FC EEG signals,
and their method achieves a classification accuracy of 100%. In [36], long short-term memory (LSTM)
algorithm was applied for the classification, with different k-folds. Based on several experiments,
the 10-fold validation was chosen to be the best. In [37], synchro squeezing transform and deep
convolutional neural network were utilized, and it provides better classification performance. In [38],
a convolutional neural network was applied on the scalp EEG signals to outperform the classification.
In [39], the authors have proposed the supervised epileptic seizure detection algorithm to analyze
long term EEG signals for reducing the computational complexity. In [40], EEG rhythm-based Taylor
Fourier filter bank was designed, and two classifiers, namely, K-NN and SVM classifiers were used
engaged, which achieved an accuracy of 94.88%. In [41], FAWT decomposition method with entropy
features was classified by the SVM classifier, which achieved better accuracy. In [42], variational mode
decomposition (VMD) was performed on the EEG signals in the DWT domain, and the computed
entropy features classified by ensemble stacking provided 95.2% accuracy. In [43], EMD method was
employed to investigate signals justified as IMFS. The features were extracted from the IMFs via phase
space reconstruction and classified by the neural networks. In [44], the third-order cumulant function
was proposed for the discrimination of EEG signals with the help of the SVM classifier.

Although the various methods in the literature have provided an efficient classification performance,
still their respective performance has to be improved. Hence, in this work, the FWHT technique is used to
analyze the NFC and FC signals, and five individual entropy measures are extracted from the decomposed
EEG signals. ANN classifier is utilized to classify the extracted features for evaluating the performance of
the proposed approach in discrimination of NFC and FC EEG signals. For this work, the two datasets,
namely the University of Bonn and BB dataset, are used. The performance is evaluated, and the results
with the state-of-art techniques are compared. The proposed method attained the highest classification
performance in both datasets.

2. Materials and Methods

2.1. Dataset Used

In this paper, the two publicly available EEG databases for the automatic classification of NFC
and FC EEG signals are used.
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2.1.1. University of Bonn Dataset

The University of Bonn EEG dataset was used to analyze the proposed work. The dataset consists
of 500 EEG recorded files with five classes (A, B, C, D, and E), every single containing single-channel
EEG sectors with 100 signals [45]. A and B classes are recordings of the healthy person during eyes
open and close. C and D classes are recordings of the epileptic subjects during the interictal stage
during the non-existence of seizures. E class is recordings of the epileptic subject during seizure activity.
The removal of artifacts is done by visual examination. This work mainly focuses on the classification
of NFC and FC EEG signals. Hence, the classes C and D were alone used in this work. The C and D
groups consist of EEG signals of duration 23.6 s, which was measured from the focal epileptic subjects.
The EEG signals measured at EZ using the depth electrodes are in class D, and class C consists of EEG
signals measured from the hippocampal formation of the opposite hemisphere of the brain. Each EEG
record consists of 4096 samples, and the sampling frequency is 173.61 Hz. The total time lengths of the
signals in the dataset are 23.6 s [45]. The samples of C and D EEG signals are shown in Figure 1.
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2.1.2. Bern-Barcelona Dataset

An open-access dataset BB was engaged in conducting all the experimentations in this present
work. The dataset consists of intracranial EEG recordings of two classes, namely NFC and FC. Each class
contains 3750 pairs of EEG recordings represented by x and y from five epileptic subjects [46] who
have experienced the temporal lobe epilepsy, where all the subjects had a surgical treatment result.
In FC recordings, x is recorded to discern the 1st ictal signal from the channels, and y is denoted
as neighboring channels. In NFC, x and y are the records of the remaining neighboring channels.
Three subjects were cured completely from seizures, whereas two subjects had the sensation of the
seizures. FC signals were obtained from the epileptic region, whereas NFC signals were collected from
the other region of the brain.

Each EEG recordings consist of 10,240 samples with a sampling rate of 512 Hz [22]. These EEG
records were preprocessed using the bandpass filter to remove artifacts. The time duration of each
EEG recording is 20 s. The entire 3750 pairs of NFC and FC recordings in the BB dataset were utilized
in this study. The sample of NFC and FC signals are shown in Figures 2 and 3.
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2.2. Fast Walsh Hadamard Transform

In this paper, a technique based on the frequency domain utilized for the classification of NFC
and FC EEG signals is proposed. The block diagram of the proposed method is given in Figure 4.
FWHT was used to extract the discriminating features from the EEG signal [47]. FWHT is an efficient
technique to estimate the Walsh–Hadamard Transform (WHT), which involves the conversion of
time-domain signals into frequency domain [48].
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FWHT decays the signal into a set of orthogonal, rectangular waveforms called Walsh functions
with the values of +1 or −1 [49]. The unique sequence value will be assigned with each Walsh function.
The execution of the FWHT algorithm is comprehended by the addition and subtraction function.
FWHT has the competency to identify the signals more precisely, that consist of a sharp disruption in
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the signal. FWHT decomposes the signal samples with a length of 2n into 2n coefficients. FWHT returns
the coefficient of the Discrete Walsh–Hadamard Transform (DWHT) of the signal. The FWHT of the
data samples of x(n) and n = 1, 2, . . . . . . N is given as follows [50]

Xw(k) =
N∑

n=1

x(n) Wn k = 1, 2, . . . . . . N (1)

where N indicates the total samples number and Wn is the Walsh function (Walsh matrix) which is
given by the following equation [51]

Wn =
1

2
n
2

(
Wn−1 Wn−1

Wn−1 −Wn−1

)
(2)

In the 1 × 1 matrix the value of W0 is equal to 1. Therefore, W1 and W2 can be written as

W1 =
1
√

2

[
1 1
1 −1

]
(3)

W2 =
1
2


1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

 (4)

The Walsh function can also be written as

Wn =
m∏

i=1

(−1)nikm−i (5)

The FWHT is a product of a data sequence whose length is 1 × N and the Walsh matrix with a
length of N × N [50].

The main advantage of this transform is it requires less storage space to store decomposed
coefficients, and signal reconstruction is faster. FWHT works on the signals with length equal to a
power of 2. If the length is less than the power of 2, its length is padded with zeros to the next greater
power of 2 before processing [52]. In this work, the FWHT was applied to analyze the EEG signal from
the University of Bonn database, of sample size 4096, which is two to the power of 12 (212). Hence, it is
decomposed to 4096 Hadamard coefficients. Whereas, in the BB data set, 10,240 samples are available.
Since it has value less than the power of two (10,240 > 213) it is padded with zeroes till the next greater
power of two so that 16,384 (214) Hadamard coefficients are decomposed and shown in Figure 5.

2.3. Feature Extraction

Feature extraction is an essential process for event classification of signals and images in the
medical field for clinical diagnosis [53]. In this study, five nonlinear entropy-based discriminating
features from the decomposed Hadamard coefficient of EEG signal were extracted. The entropy
features compute the randomness of the time sequence of the EEG signals algebraically. These measures
reflect the information of inspected anarchy within the intracortical area [54]. The extracted features
are given as follows:
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2.3.1. Approximate Entropy (ApEn)

ApEn computes the stochasticity and consistency in the manifold dimension. It is a scale-invariant
which relates the resemblance of the samples in the EEG [54]. The logarithmic probability that the
signal with N sample points reiterates itself within the lenience of p for k points and for next m + 1
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points is expressed in ApEn. For a given time sequence y(i) of length N, length N – k + 1 vectors Y(1),
Y(2), . . . ,Y(N – k + 1) are constructed. The ApEn is

ApEn(k, p, N) = φk(p) −φk+1(p) (6)

where
φk(p) =

1
(N − k + 1)

∑
i

ln
(
Cd

i (p)
)

(7)

where, Cd
i is denoted as correlation integral signifying the probability of a vector Y(i) remaining alike to

Y(j) in lenience limit p. It is widely engaged in the miscellaneous zone of biomedical signal processing.

2.3.2. Sample Entropy (SampEn)

SampEn is used to compute the consistency in the signal efficiently than ApEn [55], and it is a
revised form of ApEn, beneficial for complexity reduction in the EEG signal. It is not reliant on the
length of the time cycles [12]. The greater SampEn value suggests that the signal is predicted less
effectively, and a lower SampEn predicts the signal more effectively [54]. In SampEn, the bias instigated
by the self matches is prevented from extemporizing the function. For a given signal y(i), the sample
entropy is given as follows

SampEn(m, r, N) = − ln
(

Am(r)
Bm(r)

)
(8)

where the parameters are defined as

Bm(r) =
1

(N −m)

N−m∑
i=1

Cm
i (r) & Am(r) =

1
(N −m)

N−m∑
i=1

Cm+1
i (r) (9)

Cm
i (r) =

1
(N −m)

Ci, i = 1, 2, . . . ., N −m (10)

where, Ci is the sum, L[Y(i),Y(j)] ≤ r, without the self matches. The parameter L[Y(i),Y(j)] is the interval
between Y(i) and Y(j) and can be written as

L[Y(i), Y(j)] = max
1,2,....,m

(∣∣∣y(i + k− 1) − y( j + k− 1)
∣∣∣) (11)

2.3.3. Permutation Entropy (PermEn)

PermEn is employed to estimate the difficulty in the time sequence by comparing the neighbor
time-series signals [56]. It is a non-stationary time series approach that provides efficient and robust
and quick results [54]. The relationship between the distinct number of equidistant values for past
and present esteem are labeled by mapping onto a symbolic sequence from the continuous-time
sequence record. y(t) for t = 1, 2, . . . is embedded into a k dimensional space to accomplish the mapping.
The time-series data can be as follows [57]

Y(t) = [y(t), y(t + τ), . . . ., y(t + kτ)] (12)

where, k corresponds to the embedding measurement, and τ is the time gap. For the k embedding
dimension, the conceivable permutations will be k!. The embedded time vectors X(t) will be given by a
j symbol sequence, and pj represents a probability distribution for each symbol. HPermEn, of a specified
time sequence, x(t), is defined as follows [57]

HPermEn(k) = −
1

ln(k!)

J∑
j=1

p j ln
(
p j

)
(13)
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where the number of dissimilar symbols is J for a specified embedding dimension that is (J ≤ k!).
The normalization factor is written as 1

ln(k!) therefore 0 ≤ HPermEn/ 1
ln(k!) ≤1.

2.3.4. Fuzzy Entropy (FuzzyEn)

FuzzyEn signifies the information of consistency, and it is implemented from the fuzzy sets [58].
FuzzyEn measure on the EEG signal has a specific function, which is known as the membership
function, with a value that remains from 0 to 1 [59]. FuzzyEn is a continuous function which is used to
estimate resemblance in the time sequence of the signal [60]. The time sequence signal of y(i) with N
signifies the sample number and k represents the length, the vector sequences are considered as

Yk
i =

{
y(i), y(i + 1), (14)

where, Yk
i denotes successive values, instigated with the kth point and comprehensive by

baseline removal.

y0(i) =
1
k

k−1∑
j=0

y(i + j) (15)

The fuzzy function written in exponential form is given as,

µ
(
dk

i j, n, p
)
= exp(−

(
dk

i j)
n/p

)
(16)

where dk
i j is the absolute distance of the points.

The function φk for Yk
i and φk+1 for Yk+1

i is given as

φk(n, p) =
1

N − k

N−k∑
i=1

(
1

N − k− 1

N−k∑
j=1 j,i

µ
(
dk

i j, n, p
)
) (17)

φk+1(n, p) =
1

N − k

N−k∑
i=1

(
1

N − k− 1

N−k∑
j=1 j,i

µ
(
dk+1

i j , n, p
)
) (18)

For the finite dataset, the factor of FuzzyEn (k,n,p) of the negative natural logarithm order of the
deviancy of φk and φk+1 [58]

FuzzyEn (k, n, p) = lnφk(n, p) − lnφk+1(n, p) (19)

2.3.5. Log-Energy Entropy (LogEn)

LogEn is employed to compute the amount of contribution of signals. Mathematically, LogEn is
formulated as

LogEn =
N∑

i=1

log(y2
i ) (20)

where, N corresponds to the total interval of the signal, and yi is the ith signal samples. In [15,61],
the authors attained high classification accuracy by LogEn feature.

2.4. Artificial Neural Network (ANN) Classifier

ANN comprises the output layer, input layer, and one or more hidden layer (middle layer) with a
more number of processing nodes or artificial neurons connected with each other shown in Figure 6.
The connection between two neurons controlled by weights, which can be adjustable so as to increase
the accuracy of the system [62]. ANN is a biologically inspired model that classifies a single layer
and multiple layer architecture where the feed-forward multilayered neural network is communally
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used for physical modeling [63]. ANN follows the supervised learning methodology, and also it
overwhelmed the hitch due to the nonlinearly separable problem in the single-layer perceptron.
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ANN learning is realized by various training algorithms based on training rules or functions.
The training algorithm involves training the neural network to perform its function. In this work,
five entropy features per channel, hence a total of 10 nonlinear features, are given as an input to
the input layer to perform the discrimination between the NFC and FC signals. A feed-forward
multilayered neural network is communally used for physical modeling [63]. The few hidden neurons
are not efficient for classification [64]. Hence, the total hidden neurons considered in this study is 10.
Levenberg–Marquardt backpropagation (LMBP) training algorithm, which is a class of quasi-newton
algorithms, is used to train the neural network. LMBP algorithm is an iterative approach that discovers
the minimum function that is an amount of quadrangle of nonlinear function [65].

The classification performance is calculated for individual NFC and FC subjects based on the
classification sensitivity, accuracy, positive predictive value, specificity, and negative predictive value
which are given below

Accuracy =
T+ + T−

T+ + T− + F+ + F−
∗ 100 (21)

Sensitivity =
T+

T+ + F_
∗ 100 (22)

Speci f icity =
TN

T− + F+
∗ 100 (23)

Positive predictive value =
T+

T+ + F+
∗ 100 (24)

Negative predictive value =
T−

T− + F−
∗ 100 (25)

In the above equation T+ corresponds to true positive, T− is defined as true negative, F+ referred
to as false positive, and F− represents false negative.

3. Results and Discussion

The NFC and FC EEG signals acquired from BB and University of Bonn dataset datasets were
employed to investigate the proposed methodology. In this work, the Hadamard coefficients in the
individual pairs of the NFC and FC EEG signals were calculated by the effective decomposition method.
FWHT transforms the time series signals to the frequency-dependent signals so as to analyze the
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nonlinear characteristics. In the BB dataset, 3750 pairs of signals and C and D classes of the University
of Bonn dataset were taken for the experiment. Judicious features were extracted from the decomposed
Hadamard coefficient of EEG signals that were used for the identification of NFC and FC EEG signals.
The entropy features provide the characteristics of the nonlinearity existing in the signals to distinguish
the variation present in the two classes for the classification. The entropy measures, namely SampEn,
FuzzEn, LogEn, PermEn, and ApEn per channel, were extracted. Hence, a total of 10 features from
the BB dataset and five features from the University of Bonn dataset were extracted. Student’s t-test
was conducted on the extracted features of both databases to identify the statistically significant
features (p < 0.01). The obtained p-values for different extracted features were found to be lesser than
0.01. Hence, all the features were fed into the ANN classifier with different combinations listed in
Tables 1 and 2. Ten-fold cross-validation was performed to validate the classification performance.
Figures 7 and 8 show the variation of the NFC and FC EEG signals in the University of Bonn and BB
data, respectively.

Table 1. The classification results using the combination of entropy features for the Bern-Barcelona
(BB) dataset.

Feature Accuracy (%) Sensitivity (%) Specificity (%)

Single feature

ApEn 62.89 67.22 58.56
SampEn 96.84 100 93.69
PermEn 57.05 40.90 73.20
FuzzyEn 67.82 73.03 62.62

LogEn 59.89 61.80 57.98

Two features

SampEn, ApEn 97.41 99.14 95.68
SampEn, LogEn 98.80 97.98 99.74

SampEn, PermEn 96.75 99.98 93.53
SampEn, FuzzyEn 96.53 94.33 99

ApEn, LogEn 66.89 68.01 65.77
ApEn, PermEn 63.79 63.57 64
ApEn, FuzzyEn 70.89 74.27 67.46
LogEn, PermEn 61.21 58.82 63.60
LogEn, FuzzyEn 70.83 74.05 67.61

PermEn, FuzzyEn 69.44 75.00 63.88

Three features

SampEn, ApEn, LogEn 98.78 99.29 98.17
SampEn, ApEn, PermEn 98.30 99.47 97.13
SampEn, ApEn, FuzzyEn 98.47 99.15 97.80
SampEn, PermEn, LogEn 98.28 99.86 96.69
SampEn, LogEn, FuzzyEn 98.89 99.76 98.02

SampEn, FuzzyEn, PermEn 98.98 99.78 98.17
ApEn, LogEn, PermEn 67.47 67.34 67.59
ApEn, LogEn, FuzzyEn 74.25 78.10 70.41

LogEn, PermEn, FuzzyEn 71.80 74.56 69.05
PermEn, FuzzyEn, ApEn 71.50 74.84 68.16
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Table 1. Cont.

Feature Accuracy (%) Sensitivity (%) Specificity (%)

Four features

SampEn, ApEn, FuzzyEn, PermEn 98.54 99.27 97.81
SampEn, ApEn, FuzzyEn, LogEn 98.40 99.11 97.70

SampEn, FuzzyEn, PermEn, LogEn 99.43 99.89 98.96
SampEn, LogEn, ApEn, PermEn 98.33 99.12 97.55
ApEn, FuzzyEn, PermEn, LogEn 74.95 78.35 71.54

Five features

SampEn, ApEn, FuzzyEn, LogEn, Perm 99.50 99.70 99.30

Table 2. The classification results using the combination of entropy features for the University of Bonn dataset.

Feature Accuracy (%) Sensitivity (%) Specificity (%)

Single feature

ApEn 62.60 42 83.20
SampEn 64.15 56.30 72
PermEn 59.80 62.20 57.40
FuzzyEn 64.85 48.90 80.80

LogEn 66.90 64.70 69.10

Two features

SampEn, ApEn 72.60 64.80 80.40
SampEn, LogEn 79.40 72.60 86.2

SampEn, PermEn 67.35 62.80 71.90
SampEn, FuzzyEn 75.80 66.80 84.80

ApEn, LogEn 79.75 72 87.5
ApEn, PermEn 68.70 56.90 80.50
ApEn, FuzzyEn 78.05 70.60 85.50
LogEn, PermEn 76.45 77.40 75.50
LogEn, FuzzyEn 79.60 71.20 88

PermEn, FuzzyEn 72.85 70.40 75.30

Three features

SampEn, ApEn, LogEn 84.35 79.20 89.50
SampEn, ApEn, PermEn 73.50 70.40 76.60
SampEn, ApEn, FuzzyEn 82.35 77.40 87.30
SampEn, PermEn, LogEn 82.75 77.70 87.80
SampEn, LogEn, FuzzyEn 87.35 86.10 88.60

SampEn, FuzzyEn, PermEn 84.15 78.50 89.80
ApEn, LogEn, PermEn 86.70 81.70 91.70
ApEn, LogEn, FuzzyEn 84.30 80 88.60

LogEn, PermEn, FuzzyEn 84 78.40 89.60
PermEn, FuzzyEn, ApEn 84.25 80.40 88.10

Four features

SampEn, ApEn, FuzzyEn, PermEn 90.25 88 92.50
SampEn, ApEn, FuzzyEn, LogEn 89.55 87.70 91.40

SampEn, FuzzyEn, PermEn, LogEn 88 86.50 89.50
SampEn, LogEn, ApEn, PermEn 89.85 88.70 91
ApEn, FuzzyEn, PermEn, LogEn 90.75 87.70 93.80

Five features

SampEn, ApEn, FuzzyEn, LogEn, Perm 92.80 91 94.60

The entropy measures with single features and multiple combinations were given as an input to
the ANN classifier to identify the feature set with better classification performance. With LogEn feature
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the classification of NFC and FC using the University of Bonn database attained an accuracy of 66.90%.
While in the BB dataset, when the SampEn feature was given as input to the ANN classifier accuracy
of 96.84%, the sensitivity of 100% and specificity of 93.69% were attained. In order to improve the
precision of the overall performance, the combination of features such as two features, three features,
four features, and five features were done for both the datasets and listed in Tables 1 and 2. Compared
to different combinations with SampEn, an accuracy greater than 98% is seen in the BB dataset, while a
maximum accuracy of 99.50% was attained for five feature combinations. It can also be noted that the
combination of four features (SampEn, FuzzyEn, PermEn, LogEn), attained an accuracy of 94.43%,
which is more or less equal to the accuracy attained by the five feature combination. On the other hand,
for the University of Bonn database, the combination of five features attained a maximum accuracy of
92.80%. Hence, based on the results, the five feature combination was chosen as the best feature set for
the classification of NFC and FC EEG signals.
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The classification performance in terms of accuracy, sensitivity, and specificity for the University
of Bonn database is 92.80%, 91%, and 94.60%. Similarly, for the BB dataset, the proposed method
provides specificity of 99.36%, accuracy of 99.50%, and the sensitivity of 99.70%.
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The classification performance of the proposed method was compared with the existing methods,
which are tabulated in Table 3.

Table 3. Comparison of the performance of the proposed and existing method.

Author Name Number of Signal Pairs Methodology Classifiers Accuracy Sensitivity Specificity

BB dataset

Chatterjee [69] 3750 pairs Higher order moments
in EMD-TKEO domain SVM 92.65 90.70 93.15

Raghu et al. [14] 3750 pairs NCA and entropies LS-SVM 94.5 91.5 96.56

Sharma et al. [18] 50 pairs DWT and seven different
entropies LS-SVM 84 84 84

Sharma et al. [22] 50 pairs EM, and six different
entropies LS-SVM 87 90 84

Das et al. [15] 50 pairs EMD, DWT, and three
nonlinear features k-NN 89.4 90.7 -

Gupta et al. [11] 3750 pairs FAWT and three
different entropies LS-SVM 94.41 93.25 95.57

Sharma et al. [13] 3750 pairs Orthogonal wavelet filter
banks, entropy measures LS-SVM 94.25 91.95 96.56

Sharma et al. [16] 3750 pairs TQWT and three
different entropies LS-SVM 95 96.37 93.47

Bhattacharyya et al. [19] 3750 pairs
TQWT based
multivariate

sub-band fuzzy entropy
LS-SVM 84.67 83.86 85.46

Singh and Pachori [29] 50 pairs Fourier rhythms,
bandwidth features LS-SVM 89.7 - -

Bhattacharyya et al. [21] 50 pairs EWT, area computed
from RPS rhythms LS-SVM 90 88 92

Chen et al. [23] 3750 pairs DWT and statistical
features SVM 83.07 83.05 83.09

Fraiwan et al. [36] 3750 pairs - LSTM 99.60 99.65 99.55

Yang et al. [41] 3750 pairs FAWT and entropies LS-SVM 94.80 92.27 96.10

Md Mosheyur et al. [42] 3750 pairs VMD-DWT
and entropies

Ensemble
stacking 95.2 96.1 94.4

Wei et al. [43] 3750 pairs EMD, IMF based Neural network 95.37 95.52 95.23

Raghu et al. [44] 3750 pairs Third order cumulant
function SVM 99 99.33 98.66

Fasil and Rajesh [70] 3750 pairs Time domain
exponential energy SVM 89 - -

Dalal et al. [29] 50 pairs

Flexible time-frequency
coverage analytic
wavelet transform

and Fractal dimension

Robust
energy-based

least square twin
support

vector machine

90.2 - -

Chen et al. [71] 50 Pairs ARMA, EMD, singular
values SVM 93 100 97.9

Gupta et al. [72] 3750 pairs

Fourier–Bessel series
expansion based flexible
time-frequency coverage

wavelet transform,
mixture correntropy,
exponential energy

LS-SVM 95.85 95.47 96.24

This work 3750 pairs FWHT + Entropies ANN 99.50 99.70 99.30

University of Bonn dataset

Lima et al. [66] 200 signals DWT and statistical
features RVM 60 40 80

Acharya et al. [67] 200 signals WPD and PCA GMM 56.50 39 74

Übeyli et al. [68] 200 signals DWT and statistical
features ANN 63 35 91

Chen et al. [23] 200 signals DWT and statistical
features SVM 88 92.24 83.76

This work 200 signals FWHT + Entropies ANN 92.80 91 94.60

Various techniques have been proposed for EEG signal classification for epileptic seizure detection.
The FAWT decomposition method [11,41] was employed, with LS-SVM classifier, which attained an
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accuracy of 94.41% and 94.80%, respectively, for the 3750 pairs of signals. Table 3 shows that many
authors examined the entropy as features for classification of FC and NFC; it proves that compared to
other features, different entropy features are more discriminate in classifying the FC and NFC classes.
In [15,16,18,21], they have only examined the 50 pairs of EEG signals. In [15,22,43], EMD method was
proposed for the feature extraction. In [42], VMD-DWT decomposition was performed to detect the
epileptic seizures and achieved 95.2% of accuracy. In [36], the deep learning LSTM based features
were evaluated for the classification of NFC and FC EEG signals. The proposed approach with the BB
dataset attained an accuracy of 99.50%. It can also be noted that compared to the existing techniques
with DWT, and WPD [66–68] the proposed approach attained an accuracy of 92.80% with University of
Bonn dataset. Thus, it can be concluded that the proposed method provides a higher classification
performance than all other methods.

The comparison of the proposed method with prevailing techniques is presented in Figures 9
and 10 for the BB dataset and University of Bonn dataset. It is also proved that the proposed technique
reached maximum accuracy than the already existing techniques. The key benefit of the proposed
method is its computational efficiency and constancy. In the future deep learning, approaches will be
used to analyze the automatic recognition of epileptic seizures.
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4. Conclusions

The main aspiration of this present study was to afford an automated diagnosis tool for NFC
and FC signals, to assist the neurologist in localization of the EZ for the clinical decision making.
Therefore, the feature extraction approach called the FWHT method was used to decompose the EEG
signals into different coefficients. Five significant entropy features were extracted from the decomposed
coefficients and fed into the ANN classifier, for discrimination of NFC and FC signals. The classification
performance of single entropy features and multiple combinations of features were employed to obtain a
better classification performance. Simulation performance reveals that the combination of five entropies
achieved highest classification accuracy. Maximum accuracy of 92.80% was achieved for the University
of Bonn dataset and 99.50% for the BB dataset. Compared to the state-of-art techniques, the proposed
approach attained maximum accuracy with reduced computational performance. The performance
proposed method exceeds other methods, and it can be used for clinical practice at medical centers.
Future research direction comprises the advancement of the proposed method using deep learning
approaches and to diagnose other diseases, namely neurodegenerative disorders and mental disorders.
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