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Maximum likelihood estimation from
record-breaking data

for the generalized Pareto distribution

Summary - In this paper, we obtain the MLEs of parameters for the generalized Pareto
distribution (GPD) based on record-breaking data (record values). Then, we discuss
the properties of these estimates. Next, we compare the MLEs of the location and
scale parameters with the BLUEs given by Sultan and Moshref (2000). In addition, we
use the MLEs to construct confidence intervals for the location and scale parameters
of GPD.

Key Words - Upper record values; Maximum likelihood estimates; Biased and unbi-
ased estimates; Best linear unbiased estimates; Interval estimation; Minimum variance
bound and relative efficiency.

1. Introduction

A random variable X is said to have the GPD if its probability density
function (pdf) is of the following form [see Pickands (1975)]:

f (x)=



1

σ

{
1 + β

(
x − θ

σ

) }−(1+1/β)

, x ≥ θ, for β > 0 ,

θ < x < θ − σ/β for β < 0 ,

1

σ
e−(x−θ)/σ , x ≥ θ, for β = 0 ,

0, otherwise ,

(1.1)

while the standard form of the GPD is given from (1.1) by substituting σ = 1
and θ = 0. Some related distributions are listed below [see also Johnson, Kotz
and Balakrishnan (1994)].
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1. For β > 0, GP distribution is known as Pareto type II or Lomax distribution.
2. For β = −1, GP distribution coincides with the uniform distribution on

(θ, θ + σ ).
3. As β → 0, GP distribution leads to a two-parameter exponential distribu-

tion.

The generalized Pareto distribution was introduced by Pickands (1975).
Some of its applications include its uses in the analysis of extreme events, in
the modeling of large insurance claims, and to describe the annual maximum
flood at river gauging station. Hosking and Wallis (1987) studied the parameter
and quantile estimation for the two-parameter generalized Pareto distribution,
Smith (1987) has discussed the maximum likelihood estimation for the GPD
under simple random sampling. For some interesting graphical representation
of the generalized Pareto densities see Reiss (1989).

Record values arise naturally in many real life applications involving data
relating to weather, sports, economics and life testing studies. Many authors
have studied record values and associated statistics; for example, see Chan-
dler (1952), Ahsanullah (1980, 1988, 1990, 1993, 1995), and Arnold, Balakr-
ishnan and Nagaraja (1992, 1998). Ahsanullah (1980, 1990), Balakrishnan and
Chan (1993), and Balakrishnan, Ahsanullah and Chan (1995) have discussed
some inferential methods for exponential, Gumbel, Weibull and logistic distri-
butions, respectively. Maximum likelihood estimates of parameters for some
useful distributions, including one and two parameter exponential, one and two
parameter uniform, normal, logistic and Gumbel distributions are discussed in
Arnold, Balakrishnan and Nagaraja (1998). Balakrishnan and Ahsanullah (1994)
have established some recurrence relations satisfied by the single and double
moments of upper record values from the standard form of the GPD.

In this paper, we derive the MLEs of parameters of GPD given in (1.1)
based on record values, then we discuss the efficiency of these estimates. Also,
we compare our results by the BLUEs of the location and scale parameters
obtained by Sultan and Moshref (2000). Finally, we use the MLEs to construct
confidence intervals for the location and scale parameters of GPD.

2. MLEs

Let XU (1), XU (2), . . . XU (n) be the first n upper record-braking values from
the GPD given in (1.1), for convenience let us denote XU (i) by Xi , i =
1, 2, . . . , n. Then the pdf of the n-th upper record value is given by

fn(x) = 1

�(n)
[− log{1 − F(x)}]n−1 f (x) , (2.1)

where f (.) is given by (1.1) and F(.) is the corresponding cdf.
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The likelihood function in this case may be written as

L(θ, σ, β)=


1

σ n

[
1+β

(
xn − θ

σ

)]−1/β n∏
i=1

[
1+β

(
xi − θ

σ

)]−1

, β 
= 0 ,

1

σ n
e−(xn−θ)/σ , β = 0 .

(2.2)

From (2.2), we discuss the following cases:

1. When β = 0 (Two-parameter exponential distribution): Arnold, Balakr-
ishnan and Nagaraja (1998) have obtained the MLEs of θ and σ to be

θ̂ = x1 and σ̂ = (xn − x1)/n .

They also have discussed the unbiasedness and variances. For the sake of
completeness and comparisons, we present their results as given below:

E(θ̂) = θ + σ, Var(θ̂) = σ 2, and MSE (θ̂) = 2σ 2 , (2.3)

and

E(σ̂ ) = (n − 1)σ

n
, Var(σ̂ ) = (n − 1)σ 2

n2
, and MSE (σ̂ ) = σ 2

n
. (2.4)

In this case, we propose the unbiased estimate of σ to be

σ̃ = xn − x1

n − 1
, (2.5)

and hence

Var(σ̃ ) = MSE(σ̃ ) = σ 2

n − 1
. (2.6)

The minimum variance bound for the estimate of σ (MVB) is given by
σ2

n and the relative efficiency of σ̃ (with respect to MVB(σ )) is given by
n−1

n .
For θ we propose the following MLEs

θ̃1 = x1 − σ̂ = (n + 1)x1 − xn

n
, (2.7)

and

θ̃2 = x1 − σ̃ = nx1 − xn

n − 1
. (2.8)
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From (2.7) and (2.8), we have

E(θ̃1)=θ + σ

n
, Var(θ̃1)= (n2+n−1)σ 2

n2
and MSE(θ̃1)= (n+1)σ 2

n
, (2.9)

and

E(θ̃2) = θ and Var(θ̃2) = MSE(θ̃2) = nσ 2

n − 1
. (2.10)

From the above discussion, we note that σ̂ represents a biased estimate for σ

while σ̃ represents an unbiased estimate for σ but MSE(σ̂ ) < MSE(σ̃ ), while
θ̃1 is biased estimate for θ and θ̃2 is unbiased estimate for θ but MSE(θ̃1) <

MSE(θ̃2). Also, we can see that σ̂ and σ̃ are consistent.

Remark. when β = 0, the estimators in (2.3) and (2.4) are neither asymptoti-
cally centered nor consistent, while the estimators in (2.9) and (2.10) are not
consistent.

2. When β 
= 0: maximizing the logarithm of the likelihood function in (2.2)
with respect to θ , σ and β, respectively, gives

θ̂ = x1 , (2.11)

σ̂ = β̂

enβ̂ − 1
(xn − θ̂ ) , (2.12)

n∑
i=1

[
enβ̂ + xn − xi

xi − θ̂

]−1

= n

enβ̂ − 1
− 1

β̂enβ̂
. (2.13)

In order to discuss the efficiency of the MLEs of θ and σ , we consider
the following cases:

(a) σ and β are known: from (2.11), it is easy to show that

E(θ̂) = θ + σ

1 − β
, β < 1 , (2.14)

with variance given by

Var(θ̂) = σ 2

(1 − 2β)(1 − β)2
, β < 1/2 , (2.15)

and

MSE(θ̂) = 2σ 2

(1 − 2β)(1 − β)
, β < 1/2 . (2.16)
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From (2.14), we may propose the unbiased estimate of θ as

θ̃ = x1 − σ

1 − β
, (2.17)

with the same variance given in (2.15).
Notice that, the results given in (2.3) can be easily obtained from (2.14),
(2.15) and (2.16) by letting β → 0.

(b) θ and β are known: if θ and β are known, then from (2.12), we have

E(σ̂ ) = (1 − β)−n − 1

enβ − 1
σ , (2.18)

Var(σ̂ ) = (1 − 2β)−n − (1 − β)−2n

(enβ − 1)2
σ 2 , (2.19)

and

MSE(σ̂ ) = (1 − 2β)−n − 2(1 − β)−nenβ + e2nβ

(enβ − 1)2
σ 2 . (2.20)

In this case, we propose the unbiased estimate of σ to be

σ̃ = β(xn − θ)

(1 − β)−n − 1
. (2.21)

It can be shown that

Var(σ̃ ) = (1 − 2β)−n − (1 − β)−2n

((1 − β)−n − 1)2 σ 2 . (2.22)

(c) β is known: if θ is unknown and β is known, then from (2.12), we
have

E(σ̂ )= (1 − β)−n − (1 − β)−1

enβ − 1
σ , (2.23)

Var(σ̂ )=
[
(1 − 2β)−n − (1 − β)−2n − 2β2(1 − 2β)−1(1 − β)−(n+1)

+β2(1 − 2β)−1(1 − β)−2
]

σ 2

(enβ − 1)2
, (2.24)

MSE(σ̂ )=
[
(1 − 2β)−n − (1 − β)−2n − 2β2(1 − 2β)−1(1 − β)−(n+1)

+β2(1−2β)−1(1−β)−2+[(1−β)−n −(1−β)−1−enβ+1]2
]

× σ 2

(enβ − 1)2
. (2.25)
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From (2.23), (2.24) and (2.25), we have

lim
β−→0

E(σ̂ ) = n − 1

n
σ , (2.26)

lim
β−→0

Var(σ̂ ) = n − 1

n2
σ , (2.27)

and

lim
β−→0

MSE(σ̂ ) = σ 2

n
, (2.28)

which are the same as the results given in (2.4).
In this case, we consider the unbiased estimates of θ and σ to be

σ̃ = β(xn − x1)

(1 − β)−n − (1 − β)−1
, (2.29)

and

θ̃ =
(

1 + β

(1 − β)1−n − 1)

)
x1 −

(
β

(1 − β)1−n − 1

)
xn . (2.30)

Hence

Var(σ̃ ) = MSE(σ̃ ) =
[
(1 − 2β)−n − (1 − β)−2n

− 2β2(1 − 2β)−1(1 − β)−(n+1) + β2(1 − 2β)−1(1 − β)−2
]
,

×
[

σ

(1 − β)−n − (1 − β)−1

]2

,

(2.31)

and

Var(θ̃)=σ 2
[
(1−β)2n−2 + (1−β)2n−2(1 − 2β)n−1

−2(1−β)n−1(1 − 2β)n−1
]/ ([

1 − (1−β)n−1
]2

(1 − 2β)n
)

.

(2.32)

(d) θ and σ are known and β is unknown: solving the equation (2.13)
gives the MLE of β.
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In the following two theorems, we discuss the minimum variance bound
(MVB) of the MLEs of both σ and β:

Theorem 1. For positive β, the lower bound of the variance of β̂ is given by

MVB(β̂) = 2β3

2nβ − 3 + 4(1 + β)−n − (1 + 2β)−n
, (2.33)

and

MVB(β̂) =


3

n(n + 1)(n + 2)
, as β → 0 ,

0, as n → ∞ .

(2.34)

Proof. See Appendix B.

Theorem 2. For β > −1/2, the lower bound of the variance of σ̂ is given by

MVB(σ̂ ) = 2βσ 2

1 − (1 + 2β)−n
, (2.35)

and

MVB(σ̂ ) =



σ 2

n
, as β → 0 ,

2βσ 2, as n → ∞, β > 0 ,

0, as n → ∞, β ≤ 0 .

(2.36)

Proof. See Appendix A.

3. Simulation and comparisons

In order to show the efficiency of our results, we calculate the variances
of the MLEs of the location and scale parameters of GPD and compare them
with those of the BLUEs θ∗ and σ ∗ obtained by Sultan and Moshref (2000).
Table 1 gives the variances of the BLUEs and MLEs for n = 3, 4, 5, 6 and 7.
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Table 1: Variances of the BLUEs and MLEs when θ = 0 and σ = 1

Location Parameter Scale Parameter

β n Var(θ∗) Var(θ̃) Var(σ ∗) Var(σ̃ )

-0.1 3 1.149 1.150 0.390 0.391
4 1.024 1.025 0.239 0.240
5 0.963 0.964 0.165 0.166
6 0.927 0.928 0.121 0.123
7 0.903 0.905 0.093 0.095

0.1 3 2.118 2.121 0.716 0.718
4 1.890 1.896 0.531 0.536
5 1.779 1.788 0.441 0.449
6 1.715 1.728 0.389 0.399
7 1.674 1.691 0.356 0.369

From Table 1, we can see that the variances of the BLUEs and MLEs
decrease as n increases, and increase when β increases. In conclusion, we can
say that the variances of BLUEs obtained by Sultan and Moshref (2000) and
the unbiased MLEs presented in this paper are very close, but the MLEs are
simpler to evaluate than the BLUEs. Also, as we can see from Table 1, if
n → ∞, β = −0.1 and σ = 1, then Var(θ̂) = 0.833 and Var(σ̂ ) = 0.00833
that is because when β < 0 we have

lim
n→∞ Var(θ̂) = σ 2

1 − 2β
and lim

n→∞ Var(σ̂ ) = β2σ 2

1 − 2β
.

4. Interval estimation

In this section, we construct confidence intervals for the location and scale
parameters of GPD given in (1.1).

4.1. A confidence interval for θ when σ and β are known

Confidence interval for θ when σ and β are known may be constructed
through the statistic

T = θ̃ − µθ̃

σθ̃

, (4.1)

where µθ̃ and σθ̃ represent the mean and the standard deviation of the unbiased
estimate of θ given in (2.17).
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It is easy to show that the distribution of T is the GPD with location
parameter −√

1 − 2β, scale parameter (1 − β)
√

1 − 2β and shape parameter
β. A (1 − α)100% confidence interval for θ in this case is obtained to be(

x1 − σ

β

[
(α/2)−β − 1

]
, x1 − σ

β

[
(1 − α/2)−β − 1

])
, (4.2)

where x1 is the first upper record.

4.2. A confidence interval for σ when θ and β are known

Confidence interval for σ when θ and β are known may be constructed
using the statistic

τ = σ̃ − µσ̃

σσ̃

, (4.3)

where µθ̃ and σθ̃ represent the mean and the standard deviation of the unbiased
estimate of σ given in (2.21).

It is easy to show that the distribution of τ is the n−th record value of the
GPD given in (2.1) with location parameter θ ′, scale parameter σ ′ and shape
parameter β, where

θ ′ = 1 − (1 − β)−n√
(1 − 2β)−n − (1 − β)−2n

and σ ′ = β√
(1 − 2β)−n − (1 − β)−2n

. (4.4)

Then (1 − α)100% confidence interval for σ in this case is obtained to be(
β(xn − θ)

(1 − β)−n − 1 + √
(1 − 2β)−n − (1 − β)−2nτ1−α/2

,

β(xn − θ)

(1 − β)−n − 1 + √
(1 − 2β)−n − (1 − β)−2nτα/2

) (4.5)

where xn is the n−th upper record and the percentage point τα is the solution
of the nonlinear equation

α�(n) = �

(
n,

1

β
log

[
1 + β

σ ′ (τ − θ ′)
])

, (4.6)

where θ ′ and σ ′ are given by (3.4) and �(n, a) is the incomplete gamma
function defined by

�(n, a) =
∫ a

0
xn−1 exp(−x)dx .
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4.3. Confidence intervals for θ and σ when β is known

In this case, the (1 − α)100% confidence interval for θ and σ are given,
respectively, by(

x1 − σ̃

β

[
(α/2)−β − 1

]
, x1 − σ̃

β

[
(1 − α/2)−β − 1

])
, (4.7)

and (
β(xn − θ̃ )

(1 − β)−n − 1 + √
(1 − 2β)−n − (1 − β)−2nτ1−α/2

,

β(xn − θ̃ )

(1 − β)−n − 1 + √
(1 − 2β)−n − (1 − β)−2nτα/2

) (4.8)

where τα is the solution of the equation (4.6) and θ̃ and σ̃ are given, respectively,
by (2.29) and (2.30).

Appendices

A. Proof of Theorem 2. The pdf of the i-th record value from (1.1) can be
written as

fi(x)= 1

σ�(i)

[
log(1 + βy)

β

]i−1

(1 + βy)−(1+1/β), x > θ for β > 0 ,

θ < x < θ − σ/β for β < 0 ,

(A.1)

where y = (x − θ)/σ . From (A.1), it is easy to prove that

E (log[1 + βYi ]) = iβ , (A.2)

E
(

1

1 + βYi

)
= 1

(1 + β)i
, β > −1 , (A.3)

and

E
(

1

1 + βYi

)2

= 1

(1 + 2β)i
, β > −1/2 . (A.4)

From the likelihood equation given in (2.1), we may write

E

(
∂2 log L

∂σ 2

)
= 1

σ 2
E

[ n∑
i=1

1

(1 + βYi)2
+ 1

β

1

(1 + βYn)2
− 1

β

]
. (A.5)
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By using (A.3) and (A.4) in (A.5), we get

E

(
∂2 log L

∂σ 2

)
= −1 − (1 + 2β)−n

2βσ 2
, (A.6)

hence

MVB(σ ) = 2βσ 2

1 − (1 + 2β)−n
, (A.7)

and

lim
β→0

MVB(σ ) = σ 2

n
, (A.8)

which gives the bound in case of two parameters exponential distribution.
Also, from (A.6), we have

lim
n→∞ MVB(σ ) =

{ 2βσ 2, β > 0,

0,
−1

2
< β ≤ 0 .

(A.9)

B. Proof of Theorem 1. From the likelihood equation given in (2.1), we may
write

E

(
∂2 log L

∂β2

)
= E

[
1

β2

n∑
i=1

(
1 − 1

1 + βYi

)2

+ 1

β3

(
1 − 1

(1 + βYn

)2

+ 2

β3

(
1 − 1

1 + βYn

)
− 2

β3
log(1 + βYn)

]
,

Yi = (Xi − θ)/σ .

(B.1)

By using (A.2), (A.3) and (A.4) in (B.1), we get

E

(
∂2 log L

∂β2

)
= 1

β2

n∑
i=1

(
1 − 2

(1 + β)i
+ 1

(1 + 2β)i

)

+ 1

β3

(
1 − 2

(1 + β)n
+ 1

(1 + 2β)n

)
+ 2

β3

(
1 − 1

(1 + β)n

)
− 2n

β2

= −1

β3

(
nβ − 3

2
+ 2

(1 + β)n
− 1

2(1 + 2β)n

)
,

(B.2)
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hence for positive β, we get

MVB(β) = β3

nβ − 3

2
+ 2(1 + β)−n − 1

2
(1 + β)−n

, (B.3)

and

lim
β→0

MVB(β) = 3

n(n + 1)(n + 2)
. (B.4)

Also, from (B.3), we have

lim
n→∞ MVB(β) = 0 . (B.5)
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