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Two-atom system as a nanoantenna for mode switching and light routing
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We determine how a system composed of two nonidentical two-level atoms with different resonance frequencies
and different damping rates could work as a nanoantenna for controlled mode switching and light routing. We
calculate the angular distribution of the emitted field detected in a far-field zone of the system including the direct
interatomic interactions and arbitrary linear dimensions of the system. The calculation is carried out in terms of
the symmetric and antisymmetric modes of the two-atom system. We find that as long as the atoms are identical,
the emission cannot be switched between the symmetric and antisymmetric modes. The switching may occur
when the atoms are nonidentical and the emission can then be routed to different modes by changing the relative
ratio of the atomic frequencies, or damping rates, or by a proper tuning of the laser frequency to the atomic
resonance frequencies. It is shown that in the case of atoms of different resonance frequencies but equal damping
rates, the light routing is independent of the frequency of the driving laser field. It depends only on the sign of the
detuning between the atomic resonance frequencies. In the case of atoms of different damping rates, the emission
can be switched between different modes by changing the laser frequency from the blue to red detuned from the
atomic resonance. The effect of the interatomic interactions is also considered, and it is found that in the case of
unequal resonance frequencies of the atoms, the interactions slightly modify the visibility of the intensity pattern.
The case of unequal damping rates of the atoms is affected rather more drastically, the light routing becoming
asymmetric under the dipole-dipole interaction with the enhanced intensities of the modes turned towards the
atom of smaller damping rate.
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I. INTRODUCTION

Recently, there has been considerable interest in studying
the directional properties of optical nanoantennas composed
of dielectric or metallic particles that could emit light into a
desired direction [1–6]. Particularly interesting is a bimetallic
nanoantenna, recently invented by Shegai et al. [7], that is
capable of working as a directional frequency filter which
scatters light of different colors in opposite directions. The
nanoantenna consists of two metallic nanoparticles (gold and
silver) of different plasmon resonances and separated by a
small distance. It was demonstrated experimentally that the
antenna, when driven by a white light, can direct red and
blue components in opposite directions. Such an antenna
could have many practical applications, for example, in optical
sensing and could be used as directional single photon sources,
important for metrology, quantum computation, and quantum
information processing.

Other kinds of nanoparticles that could be employed to
work as an optical nanoantenna are single two-level atoms.
Physically, when two or more atoms are located at a small
distance, it is possible to achieve directional scattering through
interference between different modes of the electromagnetic
field to which the atoms radiate. Many authors have studied the
interference effects theoretically [8–18] and also experimen-
tally [19,20] in systems involving few atoms, or composed of a
large number of atoms confined to a small volume [21–25], or
configured in a linear chain [26–29], or self-organized along
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a waveguide [30]. It has been predicted and experimentally
demonstrated that the angular distribution of the emitted
radiation depends strongly on the number of atoms and
the geometry of the emitting system with emission maxima
(superradiance) occurring in some directions with an enhanced
intensity up to as much as N2I0, where N is the number of
atoms in a sample and I0 is the single-atom radiation intensity
[31,32]. In particular, for a line of atoms, a high focusing of
the emission along the line axis can be achieved. The focusing
increases with an increasing number of atoms and also with a
decreasing distance between the atoms [27,28,33–35].

In this paper, we address the question of controlled emissive
mode switching and light routing in a system of two two-level
atoms. Motivated by the experimental work of Shegai et al. [7]
on directional color routing, we study related effects, namely,
we consider a system of two nonidentical two-level atoms
separated by an arbitrary distance r12 and investigate how
the system, when driven by an external laser field, could
work as an optical nanoantenna for a controlled switching
of the emission between different modes and for routing light
into a desired direction. We work in terms of the collective
symmetric and antisymmetric modes of the system that have
different angular distributions. We show that the emission
can be switched between the symmetric and antisymmetric
modes only if the atoms are nonidentical with either different
resonance frequencies or unequal damping rates. The emission
can be routed to a desired mode by varying either the ratio of
the atomic frequencies or the ratio of the damping rates. In
the former, the routing is independent of the frequency of the
driving laser field, but in the latter it depends strongly on the
frequency of the laser.
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The paper is organized as follows. In Sec. II we describe
in detail our model and the geometry of the system. In
Sec. III we discuss in detail the method we use to evaluate the
intensity of the emitted light. In Sec. IV we derive a general
formula for the angular distribution of the emitted radiation.
Section V provides a simple qualitative explanation of the
origin of mode switching and light routing. The method of
calculation of the steady-state values of the density matrix
elements is presented in Sec. VI. In Sec. VII, we discuss the
angular distribution of the emitted radiation for independent
atoms omitting the collective damping and the dipole-dipole
interaction. We present analytical results for the intensity of
the emitted light which clearly demonstrate the effects of
mode switching and light routing in the system. In Sec. VIII,
we present numerical results for the angular distribution
with the collective damping and the dipole-dipole interaction
included. Finally, we summarize our results in Sec. IX.

II. THE MODEL

We consider a system composed of two nonidentical closely
spaced atoms located along the x axis at positions x1 = − 1

2 r12

and x2 = 1
2 r12, distance r12 from each other, as illustrated

in Fig. 1. The atoms are modeled as two-level systems
with transitions occurring only between two nondegenerate
energy levels |ej 〉 and |gj 〉 (j = 1,2), having energies Eej

and
Egj

such that Eej
− Egj

= h̄ωj , and separated by frequency
ωj . We work in the electric dipole approximation that the
transitions in the atoms are of the electric dipole type with
transition dipole moments �μj . It should be pointed out that the
model is not restricted to only the electric dipole transitions.
It can be extended to any other type of transitions, such as
magnetic dipole, electric quadrupole, or two-photon electric
dipole transitions.

The atoms interact with the surrounding (background)
three-dimensional electromagnetic field through the electric
dipole interaction. The interaction leads to the damping of the
atomic transitions with a rate �j , which is equal to the Einstein

FIG. 1. (Color online) Geometry of the system. Two nonidentical
two-level atoms, labeled (1) and (2), are located at fixed positions a
distance r12 from each other. The atoms are driven by a cw laser field
propagating in a direction that is taken to form an angle φ with the
z axis. The emitted field is detected at point A, located on the xy

plane at a distance R from the atoms. The position of the detector on
the xy plane is determined by the angle θ , the direction towards the
detecting point relative to the direction of the interatomic axis.

A coefficient for spontaneous emission. Since the atoms can
be at short distances from each other, the interaction of the
atoms with the electromagnetic (EM) field can also lead to a
collective behavior of the atoms that the electromagnetic field
produced by an atomic dipole can influence the field produced
by the other atomic dipole [36]. In addition, the atoms
are continuously driven by a cw monochromatic laser field
propagating in the direction both perpendicular to the atomic
axis and at an angle φ to the z axis. The frequency of the laser
field ωL is tuned close to the atomic resonance frequencies with
detunings �1 = ω1 − ωL and �2 = ω2 − ωL, respectively.

In practice, the two-atom antenna could be realized by
loading the ultracold atoms into an optical lattice or into
separate traps to ensure the atoms are well localized and
stationary [20,37,38]. A particularly relevant is the technique
recently developed by Béguin et al. [39], who used an aspheric
lens to focus two 850-nm trapping beams down to 1.1 μm. Two
single 87Rb atoms at a temperature of 50 K were loaded in
1-mK-deep microscopic optical traps from a magneto-optical
trap. The distance between the traps (atoms) was varied by
changing the incidence angle of the beams on the lens. A
distance between the atoms was calibrated by measuring the
displacement of an image of the trap when changing the
incidence of the trapping beams. The resulting uncertainty
in the position of the traps was below 5%. Another possible
technique for the experimental realization of two stationary
atoms could be in a circuit quantum electrodynamics setup, in
which two stationary superconducting artificial atoms can be
driven by a phase-controlled field. This technique has recently
been applied to demonstrate the phase-controlled selective
excitation of the symmetric and antisymmetric modes of a
two-atom system [40].

The total Hamiltonian of the system composed of two
nonidentical atoms driven by a laser field and including the
interatomic dipole-dipole interaction can be written as

H = H0 + HL, (1)

where

H0 = h̄

2∑
j=1

ωjS
z
j + h̄

2∑
i �=j=1

�ijS
+
i S−

j (2)

is the Hamiltonian of the atoms and the dipole-dipole coupling
between them, and

HL = 1

2
h̄

2∑
j=1

[�L(�rj )S+
j ei(ωLt+φL) + H.c.] (3)

is the interaction of the atoms with the driven laser field. Here,

�L(�rj ) = �μj · �EL

h̄
ei�kL·�rj = �ei�kL·�rj (4)

is the position-dependent (complex) Rabi frequency of the
laser field of the amplitude �EL, initial phase φL, and the
propagation vector �kL. The operators S+

j = |ej 〉〈gj | and S−
j =

|gj 〉〈ej |, appearing in Eq. (2) are, respectively, the raising
and lowering operators for atom j , and Sz

j = (|ej 〉〈ej | −
|gj 〉〈gj |)/2 describes its energy. They are the Pauli spin-up
and spin-down operators for a two-level atom.
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The parameter �ij stands for the magnitude of the dipole-
dipole interaction between the atoms given by the real part of
the interatomic potential, �ij = Re(Vij ), defined as

Vij = √
�i�j

{
(μ̂i · μ̂j )h(2)

0 (k0rij )

+ 1
2 [3(μ̂i · r̂ij )(μ̂j · r̂ij ) − μ̂i · μ̂j ]h(2)

2 (k0rij )
}
. (5)

Here μ̂i and r̂ij are unit vectors in the direction of the ith
atomic dipole moment �μi = μiμ̂i and in the direction of the
atomic axis �rij = rij r̂ij , respectively, k0 = ω0/c in which ω0 =
(ω1 + ω2)/2 is the average frequency of the atomic resonance
frequencies, and h(2)

n is a spherical Hankel function of the
second kind.

III. INTENSITY OF THE EMITTED FIELD
WITH A TWO-ATOM SOURCE

Our objective is to calculate the intensity I ( �R,t) of the field
emitted by the system and detected by a single detector at time
t and at an arbitrary point A on the (x,y) plane, �R = xî + yĵ ,
as shown in Fig. 1. The intensity is proportional to the normally
ordered one-time correlation function of the electromagnetic
field at the detection point

I ( �R,t) = u(R)〈 �E(−)( �R,t) · �E(+)( �R,t)〉, (6)

where �E(+)( �R,t) denotes the positive frequency part of the
electromagnetic field detected at the point �R at time t and
the average is taken over the initial state of the system.
The factor u(R) = (2cε0R

2/h̄ω0) has been introduced so that
I ( �R,t)d�Rdt is the power radiated by the atoms into an
element of solid angle d�R around the direction �R over a
small time interval dt at the moment of time t .

If in addition to the background (free) field there are sources
of the EM field such as atoms, the total electric field �E( �R,t)
at the point A can be expressed as the sum of a free-field term
�EF ( �R,t) and the source-field term �ES( �R,t):

�E( �R,t) = �EF ( �R,t) + �ES( �R,t), (7)

where

�EF ( �R,t) = i
∑

k

(
h̄ωk

2ε0V

) 1
2

�ekak(0)ei(�k· �R−ωkt) + H.c. (8)

and

�ES( �R,t) = �∇ ×
[

�∇ × 1

4πε0

2∑
j=1

�μj (t − | �R − �rj |/c)

| �R − �rj |

× θ (t − | �R − �rj |/c)

]
. (9)

The source part of the field is in the retarded form that the field
at ( �R,t) depends on the dipole moment �μj of the j th atom
at the retarded time t − | �R − �rj |/c, where �rj is the position
of the atom, and θ is the usual Heaviside function, zero for
negative argument and unity for positive argument.

The expression describes the source field for an arbitrary
point ( �R,t). Usually, we detect fields at large distances from
the source atoms, in the so-called far-field radiation zone. If
the detection point A lies in the far-field zone from the atomic

system, R � |�r2 − �r1|, the source part takes an asymptotic
form

�ES( �R,t) = 1

4πε0c2

2∑
j=1

( �R − �rj )

×
[

( �R − �rj ) × �̈μj (t − | �R − �rj |/c)

| �R − �rj |3
]
, (10)

where the double dot over �μj stands for the second derivative
over time that the source field depends on the dipole accelera-
tion.

The electric dipole operator �μj can be written as the sum
of the raising S+

j and lowering S−
j operators

�μj (t) = �pjS
+
j (t) + �p∗

j S
−
j (t), (11)

where �pj = 〈ej | �μj |gj 〉 is the dipole matrix element of the
two-level transition in the atom j .

Approximating S±
j (t − | �R − �rj |/c) by their free evolution

expressions

S±
j (t − | �R − �rj |/c) ≈ S±

j exp[±i(kR̂ · �rj − ωj t)] (12)

gives �ES( �R,t) at large distances in terms of the positive and
negative frequency components as

�ES( �R,t) = �E(+)
S ( �R,t) + �E(−)

S ( �R,t), (13)

where

E
(+)
S ( �R,t) = −1

4πε0c2

2∑
j=1

[ �R × ( �R × �p∗
j )]

R3
ω2

j S
−
j e−i(kR̂·�rj −ωj t)

(14)

and

E
(−)
S ( �R,t) = −1

4πε0c2

2∑
j=1

[ �R × ( �R × �pj )]

R3
ω2

j S
+
j ei(kR̂·�rj −ωj t).

(15)

In the derivation of the above expressions, we have used the
approximation | �R − �rj | ≈ R̂ · �rj , where R̂ = �R/R is the unit
vector in the direction of �R. It is seen that the positive (negative)
frequency part of the source field E

(+)
S ( �R,t) [E(−)

S ( �R,t)]
produced by the atoms at the point �R in the far-field zone
is proportional to the atomic lowering (raising) operators.

In general, the intensity I ( �R,t) detected at the point A can
be considered in terms of the free-field and the source-field
parts by substituting Eq. (13) into Eq. (6), which yields

I ( �R,t) = u(R)[〈 �E(−)
F ( �R,t) · �E(+)

F ( �R,t)〉
+ 〈 �E(−)

F ( �R,t)· �E(+)
S ( �R,t)〉+〈 �E(−)

S ( �R,t) · �E(+)
F ( �R,t)〉

+ 〈 �E(−)
S ( �R,t) · �E(+)

S ( �R,t)〉]. (16)

The intensity equals the sum of the free-field and the source-
field contributions together with interference terms involving
both the free field and the source field. In practice, the free
field is in the vacuum state |{0}〉, for which

�E(+)
F ( �R,t)|{0}〉 ≡ 0, (17)
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and the detection point �R is located outside the region of the
driving field. We may therefore ignore the contribution of the
free-field part and all the interference parts leaving the intensity
given by the source part only,

I ( �R,t) = u(R)〈 �E(−)
S ( �R,t) · �E(+)

S ( �R,t)〉. (18)

Hence, we can express the intensity in terms of the atomic
raising and lowering operators by substituting Eqs. (14) and
(15) into Eq. (18). The intensity is then given by

I ( �R,t) = u(ϑ)
2∑

i,j=1

√
�i�j 〈S+

i (t)S−
j (t)〉eikR̂·�rij , (19)

with u(ϑ) = (3/8π ) sin2 ϑ , in which ϑ is the angle between
the observation direction �R and the polarization of the atomic
dipole moments �pi . It follows that the correlation functions
of the atomic dipole operators 〈S+

i (t)S−
j (t)〉 are a measure of

the radiation intensity in the far-field zone. In the derivation of
Eq. (19) we have assumed that the atomic dipole moments are
parallel to each other, �p1 ‖ �p2. This is justified, if one notices
that the atomic dipole moments are both induced by the same
EM field.

IV. ANGULAR DISTRIBUTION OF THE EMITTED FIELD

We now turn to perform the summation over i and
j in Eq. (19) and discuss separately the contribution of
different terms. This will allow us to extract terms that are
responsible for the variation of the intensity with the direction
of observation �R. If we perform the summation, we obtain

I ( �R,t) = u(ϑ){�1〈S+
1 (t)S−

1 (t)〉 + �2〈S+
2 (t)S−

2 (t)〉
+

√
�1�2[〈S+

1 (t)S−
2 (t)〉 exp(ikr12 cos θ )

+〈S+
2 (t)S−

1 (t)〉 exp(−ikr12 cos θ )]}. (20)

The physical consequences of the three terms in I ( �R,t) are as
follows. The first two terms correspond to the radiation emitted
by two separate atoms. These two terms are independent of θ

and therefore they do not vary with the direction of observation
�R. The third term, which we shall call the “interference term,”

is more interesting because it gives rise to a variation of
the intensity with the direction �R. It is composed of two
terms involving cross correlations between the different atoms,
〈S+

1 (t)S−
2 (t)〉 and 〈S+

2 (t)S−
1 (t)〉. The cross correlations result

from the interference between electric fields emitted by the
different atoms that the field spontaneously emitted by one of
the atoms can be absorbed by the other atom. The interference
term can be written as a sum of two terms

Iint( �R,t) = u(ϑ)
√

�1�2{[〈S+
1 (t)S−

2 (t)〉
+ 〈S+

2 (t)S−
1 (t)〉] cos(kr12 cos θ )

+ i[〈S+
1 (t)S−

2 (t)〉 − 〈S+
2 (t)S−

1 (t)〉] sin(kr12 cos θ )}.
(21)

Hence, the interference term can be regarded as being made
up of the sum of two contributions, one involving a symmetric
combination and the other involving an antisymmetric combi-
nation of the atomic operators. There are two kinds of terms
that could be interpreted as symmetric and asymmetric modes

to which the atoms radiate. As we shall see, these terms may
lead to different effects.

Note that the number of modes and their angular distribution
depend on the distance between the atoms. Consider separately
the angular distribution of the symmetric and antisymmetric
modes. It is seen from Eq. (21) that the angular distribution of
the symmetric modes is given by a simple relation

kr12 cos θ = nπ, n = 0,±1,±2, . . . , (22)

or equivalently

cos θ = nλ

2r12
, n = 0,±1,±2, . . . , (23)

whereas the angular distribution of the antisymmetric modes
is given by

kr12 cos θ = (
n + 1

2

)
π, n = 0,±1,±2, . . . , (24)

which for angles θ may be written as

cos θ =
(
n + 1

2

)
λ

2r12
, n = 0,±1,±2, . . . . (25)

It is evident from Eqs. (23) and (25) that there is a discrete
and a finite number of directions into which the symmetric
and antisymmetric modes can make the maximal contribution.
Note that the sign of the contributions to the intensity depends
on whether cos(kr12 cos θ ) and sin(kr12 cos θ ) have positive or
negative values. It is apparent by an inspection of Eqs. (23)
and (25) that for even n, both terms have positive values,
whereas for odd n they have negative values. Consequently, if
the symmetric and antisymmetric combinations of the atomic
correlations are positive, maximum values of the intensity
will be observed in the directions corresponding to even
n, and minimum values will be observed in the directions
corresponding to odd n.

Consider in some detail the directions in which maximum
and minimum values of the intensity may be located and
whether they correspond to the directions of propagation
of symmetric or antisymmetric modes. First, we note that
there is no antisymmetric mode propagating in the direction
normal to the atomic axis (θ = π/2). However, there is
a symmetric mode propagating in the direction normal to
the atomic axis, θ = π/2, to which the system radiates for
all values of r12. For very small distances, r12 < λ/4, the
symmetric mode propagating in the direction θ = π/2 is the
only mode to which the system can radiate. For r12 = λ/4,
there are three modes to which the system can radiate, a
symmetric mode propagating in the direction θ = π/2 and two
antisymmetric modes propagating along the atomic axis, one
in the direction θ = 0 and the other in θ = π . As r12 increases,
the number of modes increases. For example, at r12 = λ/2 the
system may radiate into three symmetric modes propagating
in directions θ = 0, π/2, and π , and into two antisymmetric
modes propagating in directions θ = π/3 and 2π/3.

Figure 2 shows the angular distribution of the symmetric
and antisymmetric modes for three different separations
between the atoms, r12 = λ/4, λ/2, and λ. Figure 2(a) shows
the angular distribution of the symmetric modes while Fig. 2(b)
shows the distribution of the antisymmetric modes. It follows
from the figure that the angular distribution of both symmetric
and antisymmetric modes is strictly symmetric about θ = π/2.
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FIG. 2. (Color online) Angular distribution of (a) symmetric and
(b) antisymmetric modes for different interatomic separations, r12 =
λ/4, r12 = λ/2, and r12 = λ. The solid lines show the directions of
the modes to which the interference term contributes positively to
produce maxima in the radiation intensity, and the dashed lines show
the directions of the modes to which the interference term contributes
negatively resulting in minima of the intensity.

In the case of the symmetric modes, Fig. 2(a), and the atomic
separation r12 = λ/4, the direction θ = π/2 is the only direc-
tion the symmetric modes propagate. For r12 = λ/2, the direc-
tions θ = 0 and π for r12 = λ/2 both correspond to a minimum
of the intensity. The same property is observed for r12 = λ,
where the symmetric modes propagating in the directions θ =
π/3 and 2π/3 both correspond to a minimum while the modes
propagating in the directions θ = 0 and θ = π both correspond
to a maximum of the intensity. This means that there is no di-
rectionality effect if the system radiates through the symmetric
modes. This shows, however, that there is an interesting effect
of splitting of the emitted radiation into two beams propagating
in opposite directions relative to the direction normal to the
atomic axis. In both directions, there could be simultaneously
a maximum or minimum of the radiation intensity.

The angular distribution of the antisymmetric modes,
shown in Fig. 2(b), is intrinsically different from those of the
symmetric modes. The modes are symmetrically redistributed
around the direction normal to the atomic axis, but in each pair
of modes, one of the modes corresponds to a maximum and the
other to a minimum of the intensity. This means that depending
on the sign of the atomic correlations, the system will radiate
either to the left or to the right from the direction normal to the
atomic axis. Thus, we see clearly that the antisymmetric modes
exhibit the directionality effect. Needless to say, preparing the
system to radiate through the antisymmetric modes is the way
to achieve a directional emission of the radiation field.

From this simple analysis it follows that the directionality
or light routing can occur in the radiation emitted from the
system and, in particular, that these effects are connected to
the properties of the antisymmetric modes. It also shows that
light routing is strongly pronounced for small interatomic
separations and the visibility of this effect decreases with an
increasing separation.

V. ORIGIN OF MODE SWITCHING AND LIGHT ROUTING

We have seen that the interference term involves a sum of
two contributions, the symmetric and antisymmetric combina-
tions of the atomic operators. We now proceed to identify the
origin of switching the emission between different modes and
the directional light routing, in particular, what is required to
achieve mode switching and which of these two contributions
is responsible for light routing. Since the contributions involve
the symmetric and antisymmetric combinations of the atomic
operators, it is convenient to write the intensity in terms of
the raising and lowering operators of collective states of the
two-atom system that are eigenstates of the Hamiltonian H0.
In the absence of the interaction between the atoms, the Hilbert
space of the two-atom system can be spanned by four product
states

|g1〉|g2〉, |e1〉|g2〉, |g1〉|e2〉, |e1〉|e2〉, (26)

and in the basis of these states the Hamiltonian H0 can be
written in a matrix form as

H0 = h̄

⎛
⎜⎜⎜⎝

−ω0 0 0 0
0 1

2� �12 0

0 �12 − 1
2� 0

0 0 0 ω0

⎞
⎟⎟⎟⎠ , (27)

where ω0 = (ω1 + ω2)/2 and � = (ω1 − ω2). It is seen that
the matrix is not diagonal due to the presence of the
dipole-dipole interaction, and the diagonalization leads to the
following energy eigenstates,

|g〉 = |g1〉|g2〉, |e〉 = |e1〉|e2〉,
|s〉 = (sin α)|g1〉|e2〉 + (cos α)|e1〉|g2〉, (28)

|a〉 = (cos α)|g1〉|e2〉 − (sin α)|e1〉|g2〉,
where

cos2 α = 1

2
+ �

2
√

4�2
12 + �2

. (29)

The states |s〉 and |a〉 are the symmetric and antisymmetric
superpositions of the atomic states, respectively. In fact, these
states are nonmaximally entangled states of the two-atom
system. In the case of identical atoms (� = 0), the states
reduce to maximally entangled states that are well known in
the literature as the Dicke states [21].

Using Eq. (28) we find that the atomic raising operators can
be expressed in terms of the superposition states as

S+
1 = Ssg cos α − Sag sin α + Ses sin α + Sea cos α,

(30)
S+

2 = Ssg sin α + Sag cos α + Ses cos α − Sea sin α,

where Snm = |n〉〈m| are the operators of the transitions
between the Dicke states, m,n = a,e,g,s, and the atomic
lowering operators are obtained by taking the Hermitian
conjugate of Eq. (30).

In terms of these new operators, the correlation functions
appearing in the interference terms of the intensity become

〈S+
1 (t)S−

2 (t)〉 + 〈S+
2 (t)S−

1 (t)〉
= [〈Sss(t)〉 − 〈Saa(t)〉] sin(2α)

+ [〈Sas(t)〉 + 〈Ssa(t)〉] cos(2α),
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〈S+
1 (t)S−

2 (t)〉 − 〈S+
2 (t)S−

1 (t)〉
= 〈Sas(t)〉 − 〈Ssa(t)〉, (31)

from which we see that the presence of a nonzero dipole
moment between the symmetric and antisymmetric states is
crucial for the angular variation of the intensity.

For purposes of the physical interpretation, it is convenient
to associate the correlation functions with matrix elements of
the density operator ρ of the two-atom system. If we use the
collective states as the basis states for a matrix representation
of the density operator

ρ =
∑

m,n=a,e,g,s

ρmn|n〉〈m|, (32)

we arrive at the expressions

〈S+
1 (t)S−

1 (t)〉 = ρee(t) + ρss(t) cos2 α

+ ρaa(t) sin2 α − Re[ρsa(t)] sin 2α,

〈S+
2 (t)S−

2 (t)〉 = ρee(t) + ρss(t) sin2 α

+ ρaa(t) cos2 α + Re[ρsa(t)] sin 2α,

〈S+
1 (t)S−

2 (t)〉 + 〈S+
2 (t)S−

1 (t)〉
= [ρss(t) − ρaa(t)] sin 2α

+ 2 Re[ρsa(t)] cos 2α,

〈S+
1 (t)S−

2 (t)〉 − 〈S+
2 (t)S−

1 (t)〉 = 2 Im[ρsa(t)], (33)

where ρss(t) and ρaa(t) are, respectively, the populations of
the symmetric and antisymmetric states, and ρsa(t) is the
coherence between these states.

We may therefore write the radiation intensity as

I ( �R,t) = u(ϑ)�0{I0(t) + Ic(t) cos(kr12 cos θ )

+ Is(t) sin(kr12 cos θ )}, (34)

in which �0 = (�1 + �2)/2 is the average damping rate of
the atoms, γ = (�1 − �2)/(�1 + �2) stands for a normalized
difference between the damping rates, and we have divided
the radiation intensity into three separate parts. The first part
I0(t), which can be expressed in the form

I0(t) = ρee(t) + 1
2 (1 + γ cos 2α)ρss(t)

+ 1
2 (1 − γ cos 2α)ρaa(t) − γ Re[ρsa(t)] sin 2α, (35)

represents a fraction of the radiation intensity which is
independent of the direction of observation. It can be regarded
as the background radiation intensity. The second part

Ic(t) =
√

1 − γ 2 {[ρss(t) − ρaa(t)] sin 2α

+ 2 Re[ρsa(t)] cos 2α} (36)

represents a fraction of the intensity that varies with the
direction of observation as cos(kr12 cos θ ), and

Is(t) =
√

1 − γ 2 Im[ρsa(t)] (37)

is a fraction of the intensity that varies with the direction
of observation as sin(kr12 cos θ ). Evidently, every part that
contributes to the radiation intensity can be analyzed separately
and is known once the density matrix elements are determined.

Instead of working in terms of the two interference terms,
one can combine them into a single term, an effective
interference term, and then the radiation intensity can be
written in a simple form

I ( �R,t) = u(ϑ)�0 [I0(t) + Ie(t) cos(ψ − kr12 cos θ )] , (38)

where

Ie(t) = Ic(t)

cos ψ
and tan ψ = Is(t)

Ic(t)
. (39)

It is clear from Eq. (38) that the sine term introduces a phase
shift of the interference pattern. For ψ = 0 directions of the
maxima and minima are determined by cos(kr12 cos θ ) and
they change to that determined by sin(kr12 cos θ ) when ψ

varies from 0 to π/2. Thus, the radiation switching between
the symmetric and the antisymmetric modes can be interpreted
as resulting from the phase shift from ψ = 0 to ψ = π/2.

Depending on the sign of ψ the interference fringes can
be shifted to the right or to the left relative to the direction
normal to the atomic axis. The sign and magnitude of ψ are
determined by the amplitudes Ic(t) and Is(t). As can be seen
from the form of Ic(t), given by Eq. (36), the cosine term
makes a nonzero contribution to the intensity only when the
states |s〉 and |a〉 are unequally populated, ρss(t) − ρaa(t) �= 0,
and/or there is a coherence between the states with a nonzero
real part, Re[ρsa(t)]. Mode switching and light routing are
determined by Is(t), given by Eq. (37), that it is possible
only when the coherence ρsa(t) has a nonvanishing imaginary
part, Im[ρsa(t)] �= 0. Note that the real part of the coherence
contributes to Ic(t) only if � �= 0, as cos 2α → 0 when
� → 0. On the other hand, Ic(t) depends solely on the real
part of the coherence when the atoms are independent of each
other, as sin 2α → 0 when �12 → 0.

On the basis of these observations, one can conclude that
the presence of the coherence ρsa(t) is essential to account for
mode switching between the symmetric and antisymmetric
modes and light routing along the antisymmetric modes. The
coherence ρsa necessary for the mode switching is indicated
in Fig. 3, which shows the collective energy levels of the
two-atom system with the possible spontaneous transitions
between them.

FIG. 3. (Color online) Collective energy states of the system. The
dashed lines indicate the possible spontaneous transitions between the
states. The presence of the coherence ρsa between the intermediate
states |s〉 and |a〉 is essential for mode switching and directional
emission.
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VI. EVALUATION OF THE DENSITY MATRIX ELEMENTS

The density matrix elements which are needed to evaluate
the radiation intensity I ( �R,t) are readily calculated from the
master equation of the density operator of the system, which
has the form [8,9,36]

∂ρ

∂t
= − i

h̄
[H,ρ] − 1

2
�1(ρS+

1 S−
1 + S+

1 S−
1 ρ − 2S−

1 ρS+
1 )

− 1

2
�2(ρS+

2 S−
2 + S+

2 S−
2 ρ − 2S−

2 ρS+
2 )

− 1

2
�12(ρS+

1 S−
2 + S+

1 S−
2 ρ − 2S−

2 ρS+
1 )

− 1

2
�12(ρS+

2 S−
1 + S+

2 S−
1 ρ − 2S−

1 ρS+
2 ), (40)

where �1 and �2 are the spontaneous emission rates of the
atoms 1 and 2, respectively, and �12 is the collective damping
rate arising from the mutual coupling of the atoms through the
vacuum field. The magnitude of �12 is given by the imaginary
part of the interatomic potential, i.e., �12 = Im(V12).

The master equation can be solved and the evolution of
the system completely determined by projection of the density
operator of the system onto any complete set of basis states.
In general, it is a complicated problem since in the basis of
the collective states (26), the master equation leads to a set
of 15 coupled differential equations for the density matrix
elements that have to be evaluated, in principle, a 15 × 15
matrix to be diagonalized. It involves 12 off-diagonal and three
diagonal matrix elements. The remaining diagonal density
matrix element is found from the trace property of the density
matrix, Tr(ρ) = 1.

Thus, using the master equation (40) and the collective basis
(26), we obtain a closed set of 15 coupled differential equations
describing the evolution of the density matrix elements. In a
matrix notation, the system of equations can be written as the
inhomogeneous equation

d

dt
Y = MY + P, (41)

where M is the 15 × 15 matrix of the coefficients of the
differential equations for the density matrix elements, Y is
a column vector with the following components,

Y = col[ρaa,ρae,ρag,ρas,ρea,ρee,

ρeg,ρes,ρga,ρge,ρgg,ρgs,ρsa,ρse,ρsg], (42)

and the column vector P has nonzero components

P4 = P13 = − 1
2 i�, P8 = P12 = 2i�β,

(43)
P11 = 2(

√
�1�2 + �12), P14 = P15 = −2i�β,

where �β = 1
2 (�L1 + �L2) is the average Rabi frequency of

the laser field driving the atoms.
The matrix equation (41) is a simple differential equation

with time-independent coefficients, and is solved by direct
integration. Because the determinant of the matrix M is
different from zero, there exists an invertible matrix T which
diagonalizes M, and λ = T −1MT is the diagonal matrix
of complex eigenvalues λi . By introducing L = T −1Y and

R = T −1P, we can write the solution of Eq. (41) as

Li(t) = Li(t0)eλi t −
15∑

j=1

(λ−1)ij (1 − eλj t )Rj , (44)

where t0 is an arbitrary initial time. To obtain solutions for
Yi(t), we determine the eigenvalues λi and eigenvectors Li(t)
by a numerical diagonalization of the matrix M.

The steady-state values of the components of the vector
Y(t) are found from Eq. (44) by taking t → ∞. Thus, the
steady-state solution for the components of Y(∞) is given by

Yi (∞) = −
15∑

j=1

(M−1)ijPj . (45)

The solutions (45) are technically difficult to describe ana-
lytically, but can be evaluated numerically. The solutions are
functions of the atomic parameters � and �1,�2, the collective
parameters �12 and �12, and the driving laser parameters,
�L1,�L2 and detunings �1,�2.

Before proceeding to a detailed discussion of the angular
distribution of the radiation intensity, let us look into the
detailed form of the equation of motion for the coherence
ρsa that is required for mode switching and light routing. The
equation of motion can be easily determined from the master
equation (40) as

ρ̇sa = −(�0 + iU )ρsa + �0 (γ sin 2α + γ12 cos 2α) ρee

+ 1
2�0 (γ sin 2α − γ12 cos 2α) (ρss + ρaa), (46)

where U =
√

4�2
12 + �2 and γ12 = �12/�0.

We first observe from Eq. (46) that, because sin 2α =
2�12/U and cos 2α = �/U , the coupling of the coherence to
the populations is possible only if the atoms are nonidentical
and interact with each other. If either atoms are identical or
are independent of each other, no coupling of the coherence
to the populations is present. In this case, the coherence is
created only by the driving field. However, the driving field
should be kept weak in order to minimize the population of
the upper state |e〉. It is easy to understand, as predicted by
Eq. (34), the population ρee contributes only to the background
part of the intensity I0(t). A large background could make
the contributions of the interference terms Ic(t) and Is(t) less
visible.

VII. MODE SWITCHING AND LIGHT ROUTING
BY INDEPENDENT ATOMS

Let us first discuss the mode switching and light routing
effects by independent atoms. We assume that the atoms are at
a fixed distance r12, so there is a fixed phase relation between
the atomic dipole moments, but there is no direct exchange of
the excitation between them, i.e., the collective damping �12

and the dipole-dipole interaction �12 are both equal to zero,
�12 = 0 and �12 = 0. One can notice that in this case the
problem simplifies to that of single two-level atoms driven by
a coherent laser field. For independent atoms, we can assume
that the averages 〈S+

1 (t)S−
2 (t)〉 and 〈S+

2 (t)S−
1 (t)〉, which ap-

pear in the expression for the radiation intensity, Eq. (20),
could be factorized so that 〈S+

1 (t)S−
2 (t)〉 = 〈S+

1 (t)〉〈S−
2 (t)〉
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and 〈S+
2 (t)S−

1 (t)〉 = 〈S+
2 (t)〉〈S−

1 (t)〉. In physical terms, the
factorization is equivalent to ignoring the effect of quantum
fluctuations on the mutual correlations between the atoms, but
their oscillations still can be kept synchronized by the definite
phase of the incident laser field. This is equivalent to assuming
that the atoms behave mutually coherent although the radiation
emitted by each atom is not coherent, i.e., 〈S+

1 (t)S−
1 (t)〉 �=

〈S+
1 (t)〉〈S−

1 (t)〉 and 〈S+
2 (t)S−

2 (t)〉 �= 〈S+
2 (t)〉〈S−

2 (t)〉.
The interaction of a two-level atom with a coherent laser

field has been extensively studied in the literature [41,42].
We shall make use of some of the results in these papers,
particularly the solutions for the averages involved in the
radiation intensity formula, Eq. (20). If we examine the
radiation intensity in the steady state, the averages required
are of the form [41,42]

lim
t→∞〈S+

1 (t)S−
1 (t)〉 = �2

L1

/
D1,

lim
t→∞〈S+

2 (t)S−
2 (t)〉 = �2

L2

/
D2,

(47)
lim
t→∞〈S+

1 (t)〉 = −�L1 (�1 − 2i�1) /D1,

lim
t→∞〈S−

2 (t)〉 = −�L2 (�2 + 2i�2) /D2,

with

D1 = 2�2
L1 + �2

1 + 4�2
1, D2 = 2�2

L2 + �2
2 + 4�2

2, (48)

where �Li (i = 1,2) is the Rabi frequency of the laser field
at the position of the ith atom, and �1 = ω1 − ωL and �2 =
ω2 − ωL are detunings of the laser field frequency from reso-
nance frequencies of the atoms 1 and 2, respectively. It is easily
verified from Eq. (47) that 〈S+

1 (t)S−
1 (t)〉 �= 〈S+

1 (t)〉〈S−
1 (t)〉 and

〈S+
2 (t)S−

2 (t)〉 �= 〈S+
2 (t)〉〈S−

2 (t)〉. In other words, despite the
coherent nature of the driving field, the emitted radiation by
the independent atoms is not coherent in the steady state.

Substituting Eqs. (47) into Eq. (20), we find that the steady-
state radiation intensity is of the form

I ( �R) ≡ lim
t→∞ I ( �R,t) = u(ϑ)�0�

2

D1D2

(
(1 + γ )D2 + (1 − γ )D1

+ 2
√

1 − γ 2
{[

4�2
L − �2 + �2

0(1 − γ 2)
]

× cos (kr12 cos θ ) + 2�0 (2γ�L − �)

× sin (kr12 cos θ )
})

, (49)

where we have translated the detunings �1 and �2 to a
frequency scale centered on the average atomic frequency
ω0, i.e., �1 = �L + �/2 and �2 = �L − �/2, where �L =
ω0 − ωL. The damping rates �1 and �2 have also been defined
relative to the average damping rate of the atoms �0. In writing
Eq. (49) we have assumed that the laser field drives the system
along the symmetric mode propagating in the direction normal
to the atomic axis (Fig. 2). In this case, �kL · �r12 = 0 and then
�L1 = �L2 = �. Note that due to the axial symmetry, the
Rabi frequency is independent of the incidence angle φ. The
situation of driving the system along one of the antisymmetric
modes is obtained from Eq. (49) simply by interchanging
cos(kr12 cos θ ) with sin(kr12 cos θ ).

The variation of the radiation intensity with the direction
of observation is provided by the third term in Eq. (49), and
we now proceed to discuss conditions for mode switching and
light routing. As an example, three cases of r12 = λ/4, λ/2,

0 0.2 0.4 0.6 0.8 1
0
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0.16

θ/π

I(
R

)/
u(
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Γ 0

FIG. 4. (Color online) The radiation intensity as a function of
the observation direction θ for the atomic separation r12 = λ/4, � =
0.2�0, �1 = �2, �L = 0, and different values of �: � = 0 (solid
blue line), � = 0.5�0 (red dashed line), � = −0.5�0 (green dashed-
dotted line), and � = 20�0 (solid black line, ×102).

and λ are investigated in detail. It was pointed out in Sec. V
that the occurrence of mode switching and light routing by a
system of two interacting atoms require a nonzero amplitude
of the sine term in the radiation intensity, Eq. (34). The same
conclusion applies to the case of independent atoms considered
here.

Figure 4 shows the angular distribution of the radiation
intensity for the atomic separation r12 = λ/4 and several
different detunings �. We take �2 = �1 and assume that the
atoms are driven by a weak field, � = 0.2�0. For identical
atoms, � = 0, and then the intensity exhibits a pronounced
peak in the direction θ = π/2. As discussed above, θ = π/2
is the direction of propagation of the symmetric mode.
For � �= 0, we see the switching effect: a transfer of the
excitation from the symmetric mode to the antisymmetric
modes propagating along the atomic axis, θ = 0 and π . There
is a strong asymmetry in the intensity of the antisymmetric
modes with the direction of the enhanced emission dependent
on the sign of �. For a positive �, the system radiates strongly
into the mode propagating in the direction θ = π with almost
no emission into the mode θ = 0. The direction of the emission
reverses when � → −�. The asymmetry persists for small
and moderate � at which, as one can see from Fig. 4, there
still is a nonzero emission into the symmetric mode. When the
excitation is completely transferred from the symmetric to the
antisymmetric modes, that I ( �R) = 0 at θ = π/2, the radiation
along θ = 0 and π becomes symmetric.

Consider now the dependence of the mode switching and
light routing on the frequency of the driving laser. As predicted
by Eq. (49), the amplitude of the cosine term depends on
the square of the laser detuning. As such, it does not change
the sign when going from blue (ωL > ω0) to red (ωL < ω0)
detuned cases. That is also consistent with our conclusions in
Sec. V, where we discussed conditions for light routing of a
collective two-atom system. On the other hand, the amplitude
of the sine term depends on �L and there is a threshold
value for the laser detuning, �L = �/(2γ ), at which the
amplitude reverses sign once we move from �L < �/(2γ ) to
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FIG. 5. The angular distribution of the steady-state radiation
intensity and its variation with the laser detuning �L for � = 0.2�0,
r12 = λ/2, �1 = �2, and � = 2�0.

�L > �/(2γ ). Then the light routing effect is to be expected
that for a given direction of observation, the emitted light
intensity will be enhanced when ωL < ω0 − �/(2γ ), and
will be reduced when ωL > ω0 − �/(2γ ). In other words,
depending on the frequency of the driving field, the emission
into the antisymmetric modes can be switched between the
modes.

As we have already mentioned, for γ = 0, i.e., �1 = �2, the
switching is independent of �L, it depends solely on the sign
of �. Thus, no light routing dependent on the frequency of the
driving laser could be seen in the emitted light if the atoms have
the same damping rates, �1 = �2. It follows that γ �= 0 (�1 �=
�2) is the condition for the frequency-dependent light routing.
However, the effect of light switching between the symmetric
and antisymmetric modes could be observed even if γ = 0
provided that � �= 0. This feature is easily seen in Fig. 5,
which shows the effect of an increasing �L on the angular
distribution of the radiation intensity for r12 = λ/2 and � =
2�0. For small �L there is a pronounced peak in the direction
θ = 2π/3 and a dip at θ = π/3. As �L increases, the intensity
distribution turns to a single peak in the direction θ = π/2. The
angle θ = 2π/3 corresponds to the direction of propagation of
an antisymmetric mode, whereas θ = π/2 corresponds to the
direction of propagation of a symmetric mode. Thus, for small
�L, the system emits along the antisymmetric modes. As �L

increases, the emission switches from the antisymmetric to the
symmetric modes.

The switching of the emission from the antisymmetric to
symmetric modes with increasing �L can be understood by
examining the analytical formula for the radiation intensity,
Eq. (49). Setting γ = 0 and r12 = λ/2 in Eq. (49), it is
straightforward to see that the radiation intensity becomes

I ( �R) = 2u(ϑ)�2�0

D1D2

{(
2�2 + �2

0 + 4�2
L + �2

)
+ (

4�2
L − �2 + �2

0

)
cos (π cos θ )

− 2�0� sin (π cos θ )
}
. (50)

When �L � �0, we see that the amplitude of the sine term,
representing the contribution of the antisymmetric modes,
dominates over the amplitude of the cosine term, representing
the contribution of the symmetric modes. Thus, for �L � �0
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FIG. 6. (Color online) Angular distribution of the radiation inten-
sity for the atomic separation r12 = λ/2, � = 0.2�0, �L = −0.75�0,
�1 = �2, and different values of �: � = 2�0 (dashed blue line),
� = −2�0 (dashed-dotted green line), and � = 0 (red solid line).

the variation of the intensity with θ is determined by
the sine term. Then at θ = π/3, where sin(π cos θ ) = 1,
the intensity exhibits a dip and a peak at θ = 2π/3, where
sin(π cos θ ) = −1. When �L > �0, the amplitude of the
cosine term dominates over that of the sine term and then
the intensity exhibits a peak centered at θ = π/2, where
cos(π cos θ ) = 1.

Figure 6 shows the angular distribution of the emitted light
intensity for γ = 0 and several values of �. According to
Eq. (49), in this case the amplitude of the sine term is entirely
governed by �. When � �= 0, a peak is seen in a direction
deviating significantly from the direction normal to the atomic
axis. Depending on the sign of �, the peak occurs either in
the direction θ = π/3 or θ = 2π/3. These angles correspond
to the directions of propagation of the antisymmetric modes
[Fig. 2(b)]. For a positive �, so that ω1 > ω2, the intensity of
the emitted light is enhanced in the direction θ = 2π/3 and
suppressed in the direction θ = π/3. Conversely, for a negative
�, the maximum of the intensity occurs in the the direction of
θ = π/3 and a minimum in the direction θ = 2π/3. Thus, the
maximum of the emitted light turns to the right or to the left
with respect to the direction normal to the atomic axis when
� �= 0. It is interesting that the emitted light turns towards the
atom of smaller resonance frequency even if the laser is tuned
above the average atomic frequency, �L = ω0 − ωL < 0. In
fact, the turning direction is independent of the sign of �L.

Figure 7 shows the variation of the steady-state radiation
intensity with the laser detuning �L observed in two different
directions for atoms with equal resonance frequencies, � = 0,
but different damping rates, �2 = 10�1. We have chosen
the angles θ = π/3 and θ = 2π/3 which correspond to
the directions of propagation of the antisymmetric modes
when r12 = λ/2. Note that the intensity of light emitted in
the direction θ = 2π/3 is a mirror image of the intensity
emitted in the direction θ = π/3. It is apparent that for
a given direction of propagation, the intensity is strongly
asymmetric about �L = 0. Namely, for the direction θ = π/3,
the intensity is large for negative detunings, �L < 0, but is
almost zero for positive detunings, �L > 0. The situation
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FIG. 7. (Color online) The variation of the steady-state radiation
intensity with the laser detuning �L for � = 0.2�0, r12 = λ/2, � =
0, �2/�1 = 10, and two different directions of observation, θ = π/3
(dashed-dotted blue line) and θ = 2π/3 (dashed green line). The red
solid line is the sum of the two.

is completely opposite for the direction θ = 2π/3. Now the
intensity is large for positive detunings and is almost zero for
negative detunings. Thus, by varying the laser frequency from
blue detuned (ωL > ω0) to red detuned (ωL < ω0) from the
atomic resonance, one can switch the emission direction from
the mode propagating in the direction θ = π/3 to the mode
propagating in the direction θ = 2π/3. Hence, the simple
formula in Eq. (49) predicts clearly that the system of two
nonidentical two-level atoms may work as a nanoantenna for
mode switching and directional light routing.

To distinguish between directions of the emission one can
examine the intensity or fringe contrast factor, which for the
antisymmetric modes is given by

C = i
√

1 − γ 2[〈S+
1 (t)S−

2 (t)〉 − 〈S+
2 (t)S−

1 (t)〉]
(1 + γ )〈S+

1 (t)S−
1 (t)〉 + (1 − γ )〈S+

2 (t)S−
2 (t)〉

= Is(t)

I0(t)
, (51)

where Is(t) is the amplitude of the sine term and I0(t) is the
amplitude of the background field of the intensity formula
(34). The absolute value |C|, called the visibility, determines
the relative amplitude between the maxima and minima of the
intensity pattern. However, we consider C instead of |C| for a
simple reason that the sign of C contains the information about
the direction of emission with respect to the direction normal
to the atomic axis. For positive values of C, maxima of the
intensity occur in directions corresponding to sin(kr12 cos θ ) =
1, and for negative C there are minima at these directions.

The contrast factor C is plotted against the laser detuning
�L in Fig. 8 for various detunings � and ratios �2/�1.
For atoms with equal resonance frequencies (� = 0) but
different damping rates (�2 > �1), the factor C is positive
for negative �L and negative for positive �L. The threshold
at which C changes sign is at �L = 0. When � �= 0 and
�2/�1 �= 1, the factor is strongly asymmetric and reaches a
large negative value, C ≈ −0.9 at a negative �L. The threshold
at which C changes signs shifts towards a negative �L. For
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FIG. 8. (Color online) The steady-state intensity contrast factor C

as a function of the laser detuning �L for � = 0.2�0 and r12 = λ/2.
The solid blue line is for � = �0,�2/�1 = 10; the dashed red line
is for � = 0,�2/�1 = 10; and the dashed-dotted green line is for
� = �0,�2/�1 = 1.

�2 = �1, the factor C is negative for all detunings �L. In
terms of the directionality of the emission, for � = 0 and
(�2 > �1), the system radiates strongly to the mode θ = π/3
for all negative �L with a maximum visibility |C| = 0.7.
The situation reverses for positive �L at which the system
radiates strongly to the mode θ = 2π/3 with the same maximal
visibility 0.7. When � �= 0 and �2/�1 �= 1, the factor C is
strongly asymmetric with large negative values approaching
−1 at a small negative �L. At that detuning the system
radiates only to the mode θ = 2π/3. For atoms with equal
damping rates (�2 = �1) but unequal resonance frequencies
(� �= 0), the factor C is negative for all �L, indicating that the
directionality of emission cannot be changed by varying the
frequency ωL of the incident laser.

In closing this section we point out that the features of
mode switching and light routing are similar when distances
between the atoms are larger. In Fig. 9 we illustrate the effect of
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FIG. 9. (Color online) Angular distribution of the emitted field
intensity for the atomic separation r12 = λ, � = 0.2�0, �1 = �2,
�L = −0.75�0, and different values of �: � = 2�0 (solid blue line),
� = −2�0 (dashed green line), and � = 0 (red dashed-dotted line).
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the detuning � on the angular distribution of the emitted field
intensity by taking the distance between the atoms r12 = λ,
again for the case of equal damping rates (�1 = �2). The effect
of � is to switch the emission from the symmetric modes
propagating at angles θ = 0,π/2,π into two antisymmetric
modes propagating either at angles θ = 0.41π and 0.77π or
θ = 0.23π and 0.58π . We can distinguish two characteristic
pairs of modes and the emission can be switched from one
pair to the other by changing the sign of the detuning �. It is
interesting, and perhaps surprising, that the system does not
turn all of the emitted light into one direction, but rather splits
the emitted light into two opposite directions with respect to
the direction normal to the atomic axis. In each pair of modes,
one of the modes propagates in a direction θ < π/2 and the
other propagates in a direction θ > π/2.

VIII. LIGHT ROUTING BY INTERACTING ATOMS

We now proceed to illustrate the features of mode switching
and light routing, fully incorporating the effects of the
interaction between the atoms. In order to study these features
we numerically evaluate the steady-state values of the density
matrix elements, Eq. (45), that we then apply to graphically
display the results for the angular distribution of the radiation
intensity and its dependence on the detuning �L. In order
to work out the effects of the interatomic interactions most
clearly we maintain the parameters the same as above for the
independent atoms.

Let us first consider the effect of the interatomic interactions
on the switching and light routing for the case of � �= 0
and �1 = �2. Figure 10 shows the angular distribution of the
radiation intensity for the interatomic separation r12 = λ/2,
equal damping rates �1 = �2, and different detunings �. The
parameters are the same as those of Fig. 6. For identical atoms,
� = 0, the intensity exhibits a peak in the direction normal
to the atomic axis, θ = π/2, the direction of the symmetric
mode. For a positive detuning, the maximum of the intensity
is shifted to the direction θ = π/3 whereas for a negative
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FIG. 10. (Color online) Angular distribution of the radiation in-
tensity for the atomic separation r12 = λ/2 at which �12 = −0.152�0,
�12 = 0.215�0, for � = 0.2�0, �1 = �2, �L = −0.75�0, and dif-
ferent values of �: � = 2�0 (solid blue line), � = −2�0 (dashed
green line), and � = 0 (dashed-dotted red line).
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FIG. 11. (Color online) The steady-state intensity contrast factor
C as a function of the laser detuning �L for � = 0.2�0, r12 = λ/2,
�2 = �1, and � = 2�0. The dashed red line is for independent atoms
(�12 = �12 = 0), and the solid blue line is for interacting atoms with
numerical values of the collective parameters �12 = −0.152�0 and
�12 = 0.215�0, evaluated for r12 = λ/2 and μ̂1(2) ⊥ �r12.

� the maximum is shifted to θ = 2π/3, the directions of
the antisymmetric modes. Moreover, the intensity detected
at θ = π/3 is a mirror image of the intensity detected at
θ = 2π/3.

On comparing Fig. 10 with Fig. 6, no significant differences
are present. When the interatomic interactions are included,
in Fig. 10, the angular distribution of the radiation intensity
is seen to be qualitatively similar to that in Fig. 6 for
independent atoms. More precisely, the interactions slightly
alter the visibility by shifting its maximum value to a finite
detuning �L. This is shown in Fig. 11, where we compare
the visibility for independent atoms with that for interacting
atoms. It is seen that the effect of the interactions is to shift the
maximum value of the visibility to a finite �L. The magnitude
of the shift is equal to the magnitude of the dipole-dipole
interaction �12 = 0.215�0. The shift results in an enhanced
visibility for positive �L and a reduced visibility for negative
�L. Thus, in the case of �1 = �2, the directionality of the
emission is not influenced significantly by the interatomic
interactions.

Let us now turn to the case of �1 �= �2 and � = 0, and
consider the variation of the radiation intensity with the
detuning �L. In Fig. 12 the radiation intensity detected in
two directions, θ = π/3 and θ = 2π/3, is plotted against �L

for the same parameters as in Fig. 7, but now fully incor-
porating the interactions between the atoms. The interactions
affect the light routing between the antisymmetric modes more
drastically than the angular distribution, and that the routing
is significantly different compared to the case of independent
atoms (Fig. 7). An important difference is that in the present
case, the intensity of the mode θ = 2π/3 is not a mirror image
of the intensity of the mode θ = π/3. It turns out that the
interatomic interactions enhance the emission into the mode
propagating in the direction θ = π/3 and reduce the emission
into the mode propagating in the direction θ = 2π/3. Since
�2 > �1, we may conclude that the dipole-dipole interaction
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FIG. 12. (Color online) The variation of the steady-state radiation
intensity with the laser detuning �L in the presence of the direct
interaction between the atoms for r12 = λ/2, � = 0.2�0, � = 0,
�2/�1 = 10, and the propagation directions of the two antisymmetric
modes, θ = π/3 (solid blue line) and θ = 2π/3 (dashed green line).
The red dashed-dotted line is the sum of the two.

has the effect of turning the emission towards the atom
of smaller damping rate. The situation is analogous when
the positions of the atoms are interchanged. In this case,
the emission is enhanced into the mode propagating in the
direction θ = 2π/3 and significantly reduced in the direction
θ = π/3.

The results presented in Fig. 12 could suggest that it is
a general feature of the dipole-dipole interaction that, in the
case of �2 > �1, the interaction enhances emission into modes
propagating in a direction θ < π/2. This is true for r12 = λ/2,
but the situation differs for r12 = λ. Figure 13 shows the
corresponding behavior of the steady-state radiation intensity
for r12 = λ. We have seen that the emission can be switched
from the symmetric modes to antisymmetric modes where it
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FIG. 13. (Color online) The variation of the steady-state radiation
intensity with the laser detuning �L in the presence of the direct
interaction between the atoms for r12 = λ, � = 0.2�0, � = 0,
�2/�1 = 10, and the two pairs of modes propagating at angles
(0.41π,0.77π ) (solid blue line) and (0.23π,0.58π ) (dashed green
line). The red dashed-dotted line is the sum of the two.

groups into two pairs of directions, one pair corresponding
to sin(π cos θ ) = 1 and the other to sin(π cos θ ) = −1. We
see from the figure that in the presence of the dipole-
dipole interaction, intensities of the modes corresponding to
sin(π cos θ ) = 1 are no longer a mirror image of intensities of
the modes corresponding to sin(π cos θ ) = −1. The dipole-
dipole interaction enhances the emission into the modes
corresponding to sin(π cos θ ) = −1 and reduces the emission
into the modes corresponding to sin(π cos θ ) = 1. Since the
two modes propagating in directions θ < π/2 belong to
different pairs, only one of the modes is enhanced by the
dipole-dipole interaction. The emission into the other mode is
reduced by the dipole-dipole interaction. The same conclusion
applies to the two modes propagating in directions θ > π/2.
A careful analysis shows that the dipole-dipole interaction
enhances emission into modes whose average propagation
angle θav < π/2 and reduces emission into modes whose
average propagation angle θav > π/2. It is easy to see that
the emission is enhanced into two modes corresponding to
sin(π cos θ ) = −1 and reduced in modes corresponding to
sin(π cos θ ) = 1.

We may conclude that the dipole-dipole interaction alters
the qualitative behavior of the mode switching and light routing
when �2 �= �1. It has the effect of turning the emission
towards the atom of smaller damping rate. However, the
general conclusion of the case of independent atoms remains
unchanged, that a blue detuned laser field will direct the
emitted light to modes corresponding to sin(kr12 cos θ ) = 1,
but a red detuned field will direct the emission to modes
corresponding to sin(kr12 cos θ ) = −1.

We close this section with a brief comment about the
physical meaning of negative values of the contrast factor C.
In a paper by Mayer and Yeoman [17] the contrast factor for
the symmetric modes was evaluated, which in our notation is

C =
√

1 − γ 2[〈S+
1 (t)S−

2 (t)〉 + 〈S+
2 (t)S−

1 (t)〉]
(1 + γ )〈S+

1 (t)S−
1 (t)〉 + (1 − γ )〈S+

2 (t)S−
2 (t)〉 . (52)

The authors have considered a system composed of two
identical atoms (� = γ = 0) driven by an incoherent field
and simultaneously coupled to a cavity mode, and have found
that the factor C can have negative values. The negative values
of C indicate a minimum of the radiation intensity to occur
in the direction normal to the atomic axis. The fact that C

can have negative values was interpreted as an “intrinsically
quantum mechanical effect with no classical analog.” We have
shown that this sort of behavior can be seen in the radiation
of the system considered in the present paper, that the contrast
factor of the antisymmetric modes, Eq. (51), can have negative
values (see Figs. 8 and 11). Similarly, it is not difficult to
show that not only the contrast factor of the antisymmetric
modes but also of the symmetric modes, Eq. (52), can have
negative values. For example, Fig. 14 shows the contrast factor
(52) for the situation presented in Fig. 4 corresponding to the
radiation switching between the symmetric and antisymmetric
modes for r12 = λ/4 and � �= 0. It is seen that in the case of
nonidentical atoms, the factor (52) can have negative values
and at large detunings � it reaches the optimum negative
value C = −1. As we have seen in Fig. 4, at large � the
excitation is completely transferred from the the symmetric to
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FIG. 14. (Color online) The contrast factor C of the symmetric
modes, Eq. (52), plotted as a function of the laser detuning �L for
� = 0.2�0, r12 = λ/4, �2 = �1, and different �: � = 0 (dashed blue
line), � = 0.5�0 (solid green line), and � = 20�0 (dashed-dotted
black line).

the antisymmetric modes. Thus, our results show that C < 0 is
not associated with any intrinsically nonclassical effect. It can
be simply interpreted as resulting from a complete transfer of
the excitation from the symmetric to the antisymmetric modes
that radiate in directions different than normal to the atomic
axis.

IX. CONCLUSIONS

We have investigated radiative properties of a system
composed of two nonidentical two-level atoms, especially to
show that the system could work as a nanoantenna for the
mode switching and light routing. We have analyzed different

contributions to the radiative intensity from the collective state
populations and coherences and have found the coherence
between the symmetric and antisymmetric states is crucial for
the mode switching and light routing. It has been shown that
as long as the atoms are identical, the emission cannot be
switched between the symmetric and antisymmetric modes.
The switching may occur when the atoms are nonidentical with
either different resonance frequencies or different damping
rates. In this case, the emission can be routed to different modes
by changing the relative ratio of the resonance frequencies, or
the ratio of the damping rates, or by a proper tuning of the laser
frequency to the atomic resonance frequencies. In the case of
atoms of different resonance frequencies but equal damping
rates, the light routing is independent of the frequency of the
driving laser field. It depends only on the sign of the detuning
between the atomic resonance frequencies. In contrast, if the
atoms have different damping rates, the emission direction
can be switched between different modes by changing the
laser frequency from the blue to red detuned from the atomic
resonance.

We have also considered the effect of the interatomic
interactions, in particular, the dipole-dipole interaction on the
feature of light routing. While the light routing by the system
of interacting atoms with different resonance frequencies is
quite similar to that of independent atoms, the system of
interacting atoms with different damping rates exhibits an
interesting feature that the light routing becoming asymmetric
under the dipole-dipole interaction with the enhanced emission
into modes turned towards the atom of smaller damping rate.

Finally, we would like to point out that most of the results
obtained in the present paper are closely related to the results of
a recent experiment by Shegai et al. [7], where light routing by
a bimetallic nanoantenna consisting of two metallic particles
of different plasmon resonances was observed.
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