# On the asymptotic expansion of the $q$-dilogarithm 

## Fethi Bouzeffour* and Borhen Halouani

Correspondence:
fbouzaffour@ksu.edu.sa Department of mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia

## Abstract

In this work, we study some asymptotic expansion of the $q$-dilogarithm at $q=1$ and $q=0$ by using the Mellin transform and an adequate decomposition allowed by the Lerch functional equation.

MSC: 33D45; 33D80
Keywords: $q$-special functions; difference-differential equations

## 1 Introduction

Euler's dilogarithm is defined by [1]

$$
\begin{equation*}
L i_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \quad|z|<1 . \tag{1.1}
\end{equation*}
$$

In [2], Kirillov defines the following $q$-analog of the dilogarithm $L i_{2}(z)$ :

$$
\begin{equation*}
L i_{2}(z ; q)=\sum_{n=1}^{\infty} \frac{z^{n}}{n\left(1-q^{n}\right)}, \quad|z|<1,0<q<1, \tag{1.2}
\end{equation*}
$$

and he observes the following remarkable formula ([2], Section 2.5, Lemma 8):

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{(q, q)_{n}}=\exp \left(L i_{2}(z, q)\right), \quad|z|<1,|q|<1, \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
(q, q)_{0}=1, \quad(q, q)_{n}=\prod_{k=0}^{n-1}\left(1-q^{k}\right), \quad n=1,2, \ldots . \tag{1.4}
\end{equation*}
$$

It seems a precise formulation of (1.3) going back to Ramanujan (see [3], Chapter 27, Entry 6) is given an asymptotic series for $L i_{2}(z ; q)$ and Hardy and Littlewood [4] proved that for $|q|=1$, the identity holds inside the radius of convergence of either series.

Let $\omega=e^{z x+2 i \theta}$ with $\operatorname{Re}(z)>1, x>0$, and $0<\theta<1$. The main result of this work is the following complete asymptotic expansion of the $q$-dilogarithm function $L i_{2}\left(\omega ; e^{-x}\right)$ at
$x \rightarrow 0$ :

$$
\begin{align*}
L i_{2}\left(\omega, e^{-x}\right) \sim & C i_{2}(\theta) \frac{1}{x}+\left(\frac{1}{2}-z\right) C i_{1}(\theta)+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)(n+1)!} \\
& \times B_{n+1}(z) B_{n+1}\left(1, e^{2 i \pi \theta}\right) x^{n} \quad \text { as } x \rightarrow 0 \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
L i_{2}\left(\omega, e^{-x}\right) \sim \frac{4 \gamma}{\pi} B_{2}(\theta) \frac{\mathrm{i}}{x}+4 \sum_{n=1}^{\infty} \mathrm{i}^{n} \frac{\psi^{(n-1)}(z) B_{n+1}(\theta)}{(n+1)!}\left(\frac{2 \pi}{x}\right)^{n}, \quad x \rightarrow \infty . \tag{1.6}
\end{equation*}
$$

In Section 2.5, Corollary 10 of [2], Kirillov and Ueno and Nishizawa derived the asymptotic expansion (1.5) by using the Euler-Maclaurin summation formula; see also [5], an integral representation of Barnes type for the $q$-dilogarithm. Second, we use the Lerch functional equation to decompose the integrand and to apply the Cauchy theorem.

## 2 q-Dilogarithm

The polylogarithm is defined in the unit disk by the absolutely convergent series [1]

$$
\begin{equation*}
L i_{s}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}, \quad|z|<1 . \tag{2.1}
\end{equation*}
$$

Several functional identities satisfied by the polylogarithm are available in the literature (see [6]). For $n=2, \ldots$, the function $L i_{n}(z)$ can also be represented as

$$
\begin{equation*}
L i_{n}(z)=\int_{0}^{z} \frac{L i_{n-1}(t)}{t} d t, \quad n \in \mathbb{N}, \quad L i_{1}(z)=-\log (1-z)=\int_{0}^{z} \frac{d t}{1-t} \tag{2.2}
\end{equation*}
$$

which is valid for all $z$ in the cut plane $\mathbb{C} \backslash[1, \infty)$.
The notation $F(\theta, s)$ is used for the polylogarithm $L i_{s}\left(e^{2 \mathrm{in} \pi \theta}\right)$ with $\theta$ real, called the periodic zeta function (see [7], Section 25.13) and is given by the Dirichlet series

$$
\begin{equation*}
F(\theta, s)=\sum_{n=1}^{\infty} \frac{e^{2 \mathrm{i} n \pi \theta}}{n^{s}}, \quad \theta \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

it converges for $\operatorname{Re} s>1$ if $\theta \in \mathbb{Z}$, and for $\operatorname{Re} s>0$ if $\theta \in \mathbb{R} / \mathbb{Z}$. This function may be expressed in terms of the Clausen functions $\operatorname{Ci}_{s}(\theta)$ and $S i_{s}(\theta)$, and vice versa (see [1], Section 27.8):

$$
\begin{equation*}
L i_{s}\left(e^{ \pm i \theta}\right)=C i_{s}(\theta) \pm \mathrm{i} S i_{s}(\theta) \tag{2.4}
\end{equation*}
$$

In [8], Koornwinder defines the $q$-analog of the logarithm function

$$
-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}, \quad|z|<1
$$

as follows:

$$
\begin{equation*}
\log _{q}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{1-q^{n}}, \quad|z|<1,0<q<1 \tag{2.5}
\end{equation*}
$$

Recall that the $q$-analog of the ordinary integral (called Jackson's integral) is defined by

$$
\begin{equation*}
\int_{0}^{z} f(t) d_{q} t=(1-q) z \sum_{n=0}^{\infty} f\left(z q^{n}\right) q^{n} \tag{2.6}
\end{equation*}
$$

One can recover the ordinary Riemann integral as the limit of the Jackson integral for $q \uparrow 1$.

Lemma 2.1 The function $\log _{q}(z)$ has the following $q$-integral representation:

$$
\begin{equation*}
(1-q) \log _{q}(z)=\int_{0}^{z} \frac{1}{1-t} d_{q} t, \quad|z|<1 \tag{2.7}
\end{equation*}
$$

Moreover, it can be extended to any analytic function on $\mathbb{C}-\left\{q^{-n}, n \in \mathbb{N}_{0}\right\}$.

Proof Assume that $|z|<1$, then from (2.5) we have

$$
\begin{aligned}
(1-q) \log _{q}(z) & =(1-q) \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} z^{n} q^{n m} \\
& =(1-q) z \sum_{m=0}^{\infty} q^{m} \sum_{n=0}^{\infty} z^{n} q^{n m} \\
& =(1-q) z \sum_{m=0}^{\infty} \frac{q^{m}}{1-z q^{m}} .
\end{aligned}
$$

The inversion of the order of summation is permitted, since the double series converges absolutely when $|z|<1$.

Let $K$ be a compact subset of $\mathbb{C}-\left\{q^{-n}, n \in \mathbb{N}_{0}\right\}$. There exists $N \in \mathbb{N}$ such that, for all $z \in K,\left|q^{N} z\right|<q$. Then for $n \geq N$ we have

$$
\begin{equation*}
\left|\frac{q^{m}}{1-z q^{m}}\right| \leq \frac{q^{m}}{1-q} \tag{2.8}
\end{equation*}
$$

Hence, the series $\sum_{m=N}^{\infty} \frac{q^{m}}{1-z q^{m}}$ converges uniformly in $K$.

The $q$-dilogarithm (1.2) is related to Koornwinder's $q$-logarithm (2.5) by

$$
\begin{equation*}
L i_{2}(z, q)=\int_{0}^{z} \frac{\log _{q}(t)}{t} d t \tag{2.9}
\end{equation*}
$$

It follows that, for $n \geq 2$, we can also define

$$
\begin{equation*}
L i_{n}(z, q)=\int_{0}^{z} \frac{L i_{n-1}(t, q)}{t} d t \tag{2.10}
\end{equation*}
$$

This integral formula proves by induction that $L i_{n}(z, q)$ has an analytic continuation on $\mathbb{C}-[1, \infty)$. Moreover, for $|z|<1$, we have

$$
L i_{n}(z, q)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}\left(1-q^{k}\right)} .
$$

This converges absolutely for $|z|<1$ and defines a germ of a holomorphic function in the neighborhood of the origin. Note that

$$
\begin{aligned}
& \lim _{q \uparrow 1}(1-q) L i_{2}((1-q) z, q)=L i_{2}(z), \\
& \lim _{q \downarrow 0}(1-q) L i_{2}(z, q)=-\log (1-z), \quad|z|<1 .
\end{aligned}
$$

Let $\omega=e^{-z x+2 i \pi \theta}, \theta \in \mathbb{R}$, and $\operatorname{Re} z>0$, we define

$$
\begin{align*}
& C i_{2}(\omega, q)=\sum_{n=1}^{\infty} \frac{e^{-z x} \cos (2 \pi n \theta)}{n\left(1-q^{n}\right)},  \tag{2.11}\\
& S i_{2}(\omega, q)=\sum_{n=1}^{\infty} \frac{e^{-z x} \sin (2 \pi n \theta)}{n\left(1-q^{n}\right)} . \tag{2.12}
\end{align*}
$$

Note that these functions can be considered as $q$-analogs of the Clausen functions (2.4) and are related to the $q$-dilogarithm by

$$
\begin{equation*}
L i_{2}(\omega, q)=C i_{2}(\omega, q)+\mathrm{i} S i_{2}(\omega, q) \tag{2.13}
\end{equation*}
$$

Now, we will use the Mellin transform method to obtain the integral representation

$$
\begin{equation*}
L i_{2}\left(\omega, e^{-x}\right)=\frac{1}{2 \mathrm{i} \pi} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \zeta(s, z) F(\theta, s) \Gamma(s) x^{-s} d s, \quad c>1, \tag{2.14}
\end{equation*}
$$

where

$$
\omega=e^{-z x+2 i \pi \theta}, \quad x>0, \quad \operatorname{Re} z>1, \quad 0<\theta<1 .
$$

Recall that the Mellin transform for a locally integrable function $f(x)$ on $(0, \infty)$ is defined by

$$
\begin{equation*}
M(f, s)=\int_{0}^{\infty} f(x) x^{s-1} d x \tag{2.15}
\end{equation*}
$$

which converges absolutely and defines an analytic function in the strip

$$
a<\operatorname{Re} s<b,
$$

where $a$ and $b$ are real constants (with $a<b$ ) such that, for $\varepsilon>0$,

$$
f(x)= \begin{cases}\mathcal{O}\left(x^{-a-\varepsilon}\right) & \text { as } x \rightarrow 0^{+}  \tag{2.16}\\ \mathcal{O}\left(x^{-b-\varepsilon}\right) & \text { as } x \rightarrow+\infty\end{cases}
$$

The inversion formula reads

$$
\begin{equation*}
f(x)=\frac{1}{2 \mathrm{i} \pi} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} M(f, s) x^{-s} d s \tag{2.17}
\end{equation*}
$$

where $c$ satisfies $a<c<b$. Equation (2.17) is valid at all points $x \geq 0$ where $f(x)$ is continuous.
We first compute the Mellin transform $M\left(\psi_{n}(x), s\right)$, where

$$
\begin{equation*}
\psi_{n}(x)=\frac{e^{-n z x}}{n\left(1-e^{-n x}\right)}, \quad x>0, \operatorname{Re} z>1, n \in \mathbb{N} . \tag{2.18}
\end{equation*}
$$

Since

$$
\begin{align*}
& \psi_{n}(x) \sim \frac{1}{n x}, \quad x \rightarrow 0^{+},  \tag{2.19}\\
& \psi_{n}(x) \sim \frac{1}{n} e^{-n x(z-1)}, \quad x \rightarrow+\infty \tag{2.20}
\end{align*}
$$

We concluded that $M\left(\psi_{n}(x), s\right)$ is defined in the half-plane $\operatorname{Re} s>0$. That is, the constants $a$ and $b$ satisfy $a=1$ and $b=+\infty$, which values can be used for all $n \geq 1$ and $\operatorname{Re} z>1$. The Mellin transform of $\psi_{n}(x)$ can be obtained from the following integral representation of the Hurwitz zeta function $\zeta(s, z)$ :

$$
\begin{equation*}
\zeta(s, z)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{e^{-z x}}{1-e^{-x}} x^{s-1} d x \quad(\operatorname{Re} s>0,|\arg (1-z)|<\pi ; \operatorname{Re} s>1, z=1) \tag{2.21}
\end{equation*}
$$

Note that $\zeta(s, z)$ is expressed also by the series

$$
\begin{equation*}
\zeta(s, z)=\sum_{k=1}^{\infty} \frac{1}{(z+k)^{s}}, \quad \operatorname{Re} s>1, z \neq-1,-2, \ldots \tag{2.22}
\end{equation*}
$$

For the other values of $z, \zeta(s, z)$ is defined by analytic continuation. It has a meromorphic continuation in the $s$-plane, its only singularity in $\mathbb{C}$ being a simple pole at $s=1$,

$$
\begin{equation*}
\zeta(s, z)=\frac{1}{s-1}-\psi(z)+\mathcal{O}(s-1) \tag{2.23}
\end{equation*}
$$

Applying the Mellin inversion theorem to the integral (2.21), we then find

$$
\begin{equation*}
\psi_{n}(x)=\frac{1}{2 \mathrm{i} \pi} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \zeta(s, z) \Gamma(s)(n x)^{-s} d s \tag{2.24}
\end{equation*}
$$

We use the Stirling formula, which shows that, for finite $\sigma$,

$$
\begin{equation*}
\Gamma(\sigma+\mathrm{i} t)=\mathcal{O}\left(|t|^{\sigma-1} e^{-\frac{1}{2} \pi|t|}\right) \quad(|t| \rightarrow+\infty) \tag{2.25}
\end{equation*}
$$

and the well-known behavior of $\zeta(s, z)$ (see [9])

$$
\begin{equation*}
\zeta(s, z)=\mathcal{O}\left(|t|^{\tau(\sigma)} \log |t|\right) \tag{2.26}
\end{equation*}
$$

where

$$
\tau(\sigma)= \begin{cases}\frac{1}{2}-\sigma, & \sigma \leq 0 \\ \frac{1}{2}, & 0 \leq \sigma \leq \frac{1}{2} \\ 1-\sigma, & \frac{1}{2} \leq \sigma \leq 1 \\ 0, & \sigma \geq 1\end{cases}
$$

Then we obtain the following majorization of the modulus of the integrand in (2.24):

$$
\begin{equation*}
\mathcal{O}\left(|t|^{\tau(\sigma)+\sigma-1} \log |t|\right) \tag{2.27}
\end{equation*}
$$

Consequently, the integral (2.24) converges absolutely in the whole vertical strip of the half-plane $\operatorname{Re} s>0$. Then we replace $x$ by $n x$, where $n$ is a positive integer, and sum over $n$, and we then obtain

$$
\begin{equation*}
L i_{2}\left(\omega, e^{-x}\right)=\frac{1}{2 \mathrm{i} \pi} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \zeta(s, z) F(\theta, s+1) \Gamma(s) x^{-s} d s, \quad c>1 \tag{2.28}
\end{equation*}
$$

where

$$
\omega=e^{-z x+2 \mathrm{i} \pi \theta}, \quad x>0, \quad \operatorname{Re} z>1, \quad 0<\theta<1 .
$$

## 3 Asymptotic at $q=1$

The integral (2.28) will be used to derive asymptotic expansions of the $q$-dilogarithm. The contour of integration is moved at first to the left to obtain an asymptotic expansion at $q=1$ and then to the right to get an asymptotic expansion at $q=0$.
Let us consider the function

$$
\begin{equation*}
g(s)=\zeta(s, z) F(\theta, s+1) \Gamma(s) . \tag{3.1}
\end{equation*}
$$

The periodic function zeta function $F(\theta, s)$ has an extension to an entire function in the $s$-plane (see [10]). Hence, the function $g(s)$ has a meromorphic continuation in the $s$-plane, its only singularity in $\mathbb{C}$ coincides with the pole of $\Gamma(s)$ and $\zeta(s, z)$ being a simple pole at $s=1,0,-1,-2, \ldots$.

Now we compute the residues of the poles. The special values at $s=-1,-2 \ldots$ of the periodic zeta function are reduced to the Apostol-Bernoulli polynomials (see [10]),

$$
\begin{equation*}
F(\theta,-n)=-\frac{B_{n+1}\left(1, e^{2 \mathrm{i} \pi \theta}\right)}{n+1} \tag{3.2}
\end{equation*}
$$

We need also the following asymptotic expansions of $\Gamma(s)$ and $\zeta(s)$ at $s=0$ :

$$
\begin{align*}
& \Gamma(s)=\frac{1}{s}-\gamma+\mathcal{O}\left(s^{2}\right)  \tag{3.3}\\
& \zeta(s)=\frac{1}{2}-z+s \log \frac{\Gamma(z)}{2 \pi}+\mathcal{O}\left(s^{2}\right) . \tag{3.4}
\end{align*}
$$

Hence,

$$
\begin{aligned}
& \lim _{s \rightarrow 1}(s-1) g(s)=L i_{2}\left(e^{2 \mathrm{i} \pi \theta}\right), \\
& \lim _{s \rightarrow-n}(s+n) g(s)=\frac{(-1)^{n}}{(n+1)(n+1)!} B_{n+1}(z) B_{n+1}\left(1, e^{2 \mathrm{i} \pi \theta}\right) .
\end{aligned}
$$

Here $B_{n}(z)$ is the Bernoulli polynomial (see [1]).
Let $N$ be an integer and $d$ real number such that $-N-1<d<-N$. We consider the integral taken round the rectangular contour with vertices at $d \pm \mathrm{i} A$ and $c \pm \mathrm{i} A$, so that
the side in $\operatorname{Re}(s)<0$ parallel to the imaginary axis passes midway between the poles $s=$ $1,0-1,-2, \ldots,-N$. The contribution from the upper and lower sides $s=\sigma \pm \mathrm{i} A$ vanishes as $|A| \rightarrow+\infty$, since the modulus of the integrand is controlled by

$$
\begin{equation*}
\mathcal{O}\left(|A|^{\tau(\sigma)+\sigma-1 / 2} \log |A| e^{-\frac{1}{2} \pi|A|}\right) \tag{3.5}
\end{equation*}
$$

This follows from Stirling's formula (2.25), the behavior $\zeta(s, z)$ being given by (2.26), and the following estimation:

$$
|F(\theta, s+1)| \leq \zeta(\sigma+1)=\mathcal{O}(1), \quad|A| \rightarrow+\infty
$$

Displacement of the contour (2.28) to the left then yields

$$
\begin{align*}
L i_{2}\left(\omega, e^{-x}\right)= & C i_{2}(\theta) \frac{1}{x}+\left(\frac{1}{2}-z\right) C i_{1}(\theta) \\
& +\sum_{n=1}^{N} \frac{(-1)^{n+1}}{(n+1)(n+1)!} B_{n+1}(z) B_{n+1}\left(1, e^{2 \mathrm{i} \pi \theta}\right) x^{n}+R_{N}(x) \tag{3.6}
\end{align*}
$$

where the remainder integral $R_{N}(z)$ is given by

$$
\begin{equation*}
R_{N}(x)=\frac{1}{2 \mathrm{i} \pi} \int_{d-\mathrm{i} \infty}^{d+\mathrm{i} \infty} \zeta(s, z) F(\theta, s+1) \Gamma(s) x^{-s} d s, \quad x>0, \operatorname{Re} z>1 . \tag{3.7}
\end{equation*}
$$

From (3.5), we find

$$
\left|R_{N}(x)\right|=\mathcal{O}\left(\frac{1}{x^{N+1}}\right)
$$

## 4 Asymptotic at $\boldsymbol{q}=0$

Recall that the periodic zeta function satisfies the functional equation (see [10])

$$
\begin{align*}
F(\theta, s) & =\frac{\Gamma(1-s)}{(2 \pi)^{1-s}}\left\{e^{\frac{\pi i(1-s)}{2}} \zeta(1-s, \theta)+e^{\frac{\pi i(s-1)}{2}} \zeta(1-s, 1-\theta)\right\} \\
& (\operatorname{Re} s>1,0<\theta<1), \tag{4.1}
\end{align*}
$$

first given by Lerch, whose proof follows the lines of the first Riemann proof of the functional equation for $\zeta(x)$.

It is well known that the asymptotic expansion near infinity via the Mellin transform is obtained by displacement of the contour of integration in the Mellin inversion formulas (2.16) to the right-hand side (see [11]). However, the integrand (2.28) has no poles in the half-plane $\operatorname{Re} s>1$. The periodic zeta function $F(\theta, s)$ has an analytic continuation to the whole $s$-space for $0<\theta<1$. Moreover, the poles of $\Gamma(1-s)$ in equation (4.1) at $s=-1,-2 \ldots$ are canceled by the zeros of the function

$$
e^{\frac{\pi \mathrm{i}(1-s)}{2}} \zeta(1-s, \theta)+e^{\frac{\pi \mathrm{i}(s-1)}{2}} \zeta(1-s, 1-\theta) .
$$

On the other hand from (4.1) we easily obtain

$$
\begin{equation*}
\Gamma(s)\{F(\theta, s+1)+F(1-\theta, s+1)\}=-\frac{(2 \pi)^{s+1}}{2 s \sin \frac{\pi s}{2}}\{\zeta(-s, \theta)+\zeta(-s, 1-\theta)\}, \tag{4.2}
\end{equation*}
$$

where we are able to simplify (4.2) by the well-known reflection formulas

$$
\frac{\pi}{\sin \pi s}=\Gamma(s) \Gamma(1-s), \quad \frac{\sin \pi s}{\pi}=\frac{2}{\pi} \sin \frac{\pi s}{2} \sin \frac{\pi(1-s)}{2} .
$$

Proceeding similar to above we also obtain

$$
\begin{equation*}
\Gamma(s)\{F(\theta, s)-F(1-\theta, s)\}=\frac{(2 \pi)^{s+1}}{2 s \cos \frac{\pi(s)}{2}}\{\zeta(-s, \theta)-\zeta(-s, 1-\theta)\} . \tag{4.3}
\end{equation*}
$$

Moreover, the integral representation (2.28) is valid for all $0<\theta<1$. So we can replace $\theta$ by $1-\theta$ in its integrand. Using the above decomposition (4.2) and (4.3), we then obtain

$$
\begin{equation*}
C i_{2}\left(\omega, e^{-x}\right)=-\frac{1}{2 \mathrm{i} \pi} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{(2 \pi)^{s+1} \zeta(s, z)}{2 s \sin \frac{\pi s}{2}}\{\zeta(-s, \theta)+\zeta(-s, 1-\theta)\} \frac{d s}{x^{s}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S i_{2}\left(\omega, e^{-x}\right)=\frac{1}{2 \mathrm{i} \pi} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{(2 \pi)^{s+1} \zeta(s, z)}{2 s \cos \frac{\pi s}{2}}\{\zeta(-s, \theta)-\zeta(-s, 1-\theta)\} \frac{d s}{x^{s}}, \tag{4.5}
\end{equation*}
$$

where $\omega=e^{-z x+2 \mathrm{i} \pi \theta}, 0<x, 0<\theta<1,0<\operatorname{Re} z$, and $1<c<2$.
Note that the special values $\zeta(n, z)\left(n \in \mathbb{N}_{0}\right)$ are expressed in terms of the polygamma function $\psi(z)$,

$$
\begin{equation*}
\zeta(n+1, z)=\frac{(-1)^{n+1}}{n!} \psi^{(n)}(z), \quad z \neq 0,-1,-2, \ldots, \tag{4.6}
\end{equation*}
$$

and $\zeta(-n, z)(n \in \mathbb{N})$ is reduced to the Bernoulli polynomial

$$
\begin{equation*}
\zeta(-n, z)=-\frac{B_{n+1}(z)}{n+1} \tag{4.7}
\end{equation*}
$$

Applying the identities for the Bernoulli polynomial

$$
B_{n}(1-\theta)=(-1)^{n} B_{n}(\theta),
$$

we obtain

$$
\begin{align*}
& \zeta(-n, \theta)+\zeta(-n, 1-\theta)=\left((-1)^{n+1}-1\right) \frac{B_{n+1}(\theta)}{n+1}  \tag{4.8}\\
& \zeta(-n, \theta)-\zeta(-n, 1-\theta)=\left((-1)^{n}-1\right) \frac{B_{n+1}(\theta)}{n+1} \tag{4.9}
\end{align*}
$$

The integrand in (4.4) has a meromorphic continuation in the $s$-plane, its only singularity in the half-plane $\operatorname{Re} s>0$ coincides with the pole of $1 / \sin \frac{\pi s}{2}$ being a simple pole at $s=$ $2,4, \ldots$. Then by the Cauchy integral, we can shift the contour in (4.4) to the right, picking up the residues at $s=2, \ldots, 2 N$, with the result

$$
\begin{equation*}
C i_{2}\left(\omega, e^{-x}\right)=4 \sum_{n=1}^{N}(-1)^{n} \frac{\psi^{(2 n-1)}(z) B_{2 n+1}(\theta)}{(2 n+1)!}\left(\frac{2 \pi}{x}\right)^{2 n}+Q_{N}(x) \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{N}(x)=-\frac{1}{2 \mathrm{i} \pi} \int_{c+2 N-\mathrm{i} \infty}^{c+2 N+\mathrm{i} \infty} \frac{(2 \pi)^{s+1} \zeta(s, z)}{2 s \sin \frac{\pi s}{2}}\{\zeta(-s, \theta)+\zeta(-s, 1-\theta)\} \frac{d s}{x^{s}} . \tag{4.11}
\end{equation*}
$$

Using the following estimations in a vertical strip $s=\sigma+\mathrm{i} t, \sigma \neq 0, \pm 1, \pm 2, \ldots$,

$$
\begin{equation*}
\frac{1}{\sin \frac{\pi s}{2}}=\mathcal{O}\left(|t|^{-1} e^{-\frac{\pi}{2}|t|}\right), \tag{4.12}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left|Q_{N}(x)\right|=\mathcal{O}\left(\frac{1}{x^{2 N+1}}\right) \tag{4.13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
S i_{2}\left(\omega, e^{-x}\right)=\frac{4 \gamma}{\pi} B_{2}(\theta) \frac{1}{x}+4 \sum_{n=1}^{N}(-1)^{n} \frac{\psi^{(2 n)}(z) B_{2 n+2}(\theta)}{(2 n+2)!}\left(\frac{2 \pi}{x}\right)^{2 n+1}+\mathcal{O}\left(\frac{1}{x^{2 N+2}}\right) . \tag{4.14}
\end{equation*}
$$

Proposition 4.1 Let $\omega=e^{-z x+2 i \pi \theta}, x>0, \operatorname{Re} z>1$ and $0<\theta<1$. Then

$$
\begin{equation*}
L i_{2}\left(\omega, e^{-x}\right) \sim \frac{4 \gamma}{\pi} B_{2}(\theta) \frac{\mathrm{i}}{x}+4 \sum_{n=1}^{\infty} \mathrm{i}^{n} \frac{\psi^{(n-1)}(z) B_{n+1}(\theta)}{(n+1)!}\left(\frac{2 \pi}{x}\right)^{n}, \quad x \rightarrow \infty . \tag{4.15}
\end{equation*}
$$

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

## Acknowledgements

The first author would like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research group No. (RG-1437-020).

Received: 25 August 2015 Accepted: 13 March 2016 Published online: 09 May 2016

## References

1. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972). ISBN:0-486-61272-4
2. Kirillov, AN: Dilogarithm identities. Prog. Theor. Phys. Suppl. 118, 61-142 (1995)
3. Berndt, BC: Ramanujan's Notebooks. Part IV. Springer, Berlin (1994)
4. Hardy, GH, Littlewood, JE: Note on the theory of series (XXIV): a curious power series. Proc. Camb. Philos. Soc. 42, 85-90 (1946)
5. McIntosh, RJ: Some asymptotic formulae for $q$-shifted factorials. Ramanujan J. 3, 205-214 (1999)
6. Lewin, L: Polylogarithms and Associated Functions. North-Holland, New York (1981). ISBN:0-444-00550-1
7. Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). http://dlmf.nist.gov
8. Koornwinder, TH: Special functions and q-commuting variables. In: Ismail, MEH, Masson, DR, Rahman, M (eds.) Special Functions, $q$-Series and Related Topics. Fields Institute Communications, vol. 14, pp. 131-166. Am. Math. Soc., Providence (1997)
9. Whittaker, ET, Watson, GN: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1990)
10. Apostol, TM: On the Lerch zeta function. Pac. J. Math. 1, 161-167 (1951)
11. Paris, RB, Kaminsky, D: Asymptotics and the Mellin-Barnes Integrals. Cambridge University Press, New York (2001), ISBN:0-521-79001-8
