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Abstract
In this work, we study some asymptotic expansion of the q-dilogarithm at q = 1 and
q = 0 by using the Mellin transform and an adequate decomposition allowed by the
Lerch functional equation.
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1 Introduction
Euler’s dilogarithm is defined by []

Li(z) =
∞∑

n=

zn

n , |z| < . (.)

In [], Kirillov defines the following q-analog of the dilogarithm Li(z):

Li(z; q) =
∞∑

n=

zn

n( – qn)
, |z| < ,  < q < , (.)

and he observes the following remarkable formula ([], Section ., Lemma ):

∞∑

n=

zn

(q, q)n
= exp

(
Li(z, q)

)
, |z| < , |q| < , (.)

where

(q, q) = , (q, q)n =
n–∏

k=

(
 – qk), n = , , . . . . (.)

It seems a precise formulation of (.) going back to Ramanujan (see [], Chapter , En-
try ) is given an asymptotic series for Li(z; q) and Hardy and Littlewood [] proved that
for |q| = , the identity holds inside the radius of convergence of either series.

Let ω = ezx+iθ with Re(z) > , x > , and  < θ < . The main result of this work is
the following complete asymptotic expansion of the q-dilogarithm function Li(ω; e–x) at
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x → :

Li
(
ω, e–x) ∼ Ci(θ )


x

+
(




– z
)

Ci(θ ) +
∞∑

n=

(–)n+

(n + )(n + )!

× Bn+(z)Bn+
(
, eiπθ

)
xn as x →  (.)

and

Li
(
ω, e–x) ∼ γ

π
B(θ )

i
x

+ 
∞∑

n=

in ψ (n–)(z)Bn+(θ )
(n + )!

(
π

x

)n

, x → ∞. (.)

In Section ., Corollary  of [], Kirillov and Ueno and Nishizawa derived the asymp-
totic expansion (.) by using the Euler-Maclaurin summation formula; see also [], an
integral representation of Barnes type for the q-dilogarithm. Second, we use the Lerch
functional equation to decompose the integrand and to apply the Cauchy theorem.

2 q-Dilogarithm
The polylogarithm is defined in the unit disk by the absolutely convergent series []

Lis(z) =
∞∑

n=

zn

ns , |z| < . (.)

Several functional identities satisfied by the polylogarithm are available in the literature
(see []). For n = , . . . , the function Lin(z) can also be represented as

Lin(z) =
∫ z



Lin–(t)
t

dt, n ∈N, Li(z) = – log( – z) =
∫ z



dt
 – t

, (.)

which is valid for all z in the cut plane C \ [,∞).
The notation F(θ , s) is used for the polylogarithm Lis(einπθ ) with θ real, called the peri-

odic zeta function (see [], Section .) and is given by the Dirichlet series

F(θ , s) =
∞∑

n=

einπθ

ns , θ ∈R, (.)

it converges for Re s >  if θ ∈ Z, and for Re s >  if θ ∈ R/Z. This function may be expressed
in terms of the Clausen functions Cis(θ ) and Sis(θ ), and vice versa (see [], Section .):

Lis
(
e±iθ ) = Cis(θ ) ± iSis(θ ). (.)

In [], Koornwinder defines the q-analog of the logarithm function

– log( – z) =
∞∑

n=

zn

n
, |z| < ,

as follows:

logq(z) =
∞∑

n=

zn

 – qn , |z| < ,  < q < . (.)
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Recall that the q-analog of the ordinary integral (called Jackson’s integral) is defined by

∫ z


f (t) dqt = ( – q)z

∞∑

n=

f
(
zqn)qn. (.)

One can recover the ordinary Riemann integral as the limit of the Jackson integral for
q ↑ .

Lemma . The function logq(z) has the following q-integral representation:

( – q) logq(z) =
∫ z




 – t

dqt, |z| < . (.)

Moreover, it can be extended to any analytic function on C – {q–n, n ∈N}.

Proof Assume that |z| < , then from (.) we have

( – q) logq(z) = ( – q)
∞∑

n=

∞∑

m=

znqnm

= ( – q)z
∞∑

m=

qm
∞∑

n=

znqnm

= ( – q)z
∞∑

m=

qm

 – zqm .

The inversion of the order of summation is permitted, since the double series converges
absolutely when |z| < .

Let K be a compact subset of C – {q–n, n ∈ N}. There exists N ∈ N such that, for all
z ∈ K , |qN z| < q. Then for n ≥ N we have

∣∣∣∣
qm

 – zqm

∣∣∣∣ ≤ qm

 – q
. (.)

Hence, the series
∑∞

m=N
qm

–zqm converges uniformly in K . �

The q-dilogarithm (.) is related to Koornwinder’s q-logarithm (.) by

Li(z, q) =
∫ z



logq(t)
t

dt. (.)

It follows that, for n ≥ , we can also define

Lin(z, q) =
∫ z



Lin–(t, q)
t

dt. (.)

This integral formula proves by induction that Lin(z, q) has an analytic continuation on
C – [,∞). Moreover, for |z| < , we have

Lin(z, q) =
∞∑

k=

zk

kn( – qk)
.
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This converges absolutely for |z| <  and defines a germ of a holomorphic function in the
neighborhood of the origin. Note that

lim
q↑

( – q)Li
(
( – q)z, q

)
= Li(z),

lim
q↓

( – q)Li(z, q) = – Log( – z), |z| < .

Let ω = e–zx+iπθ , θ ∈R, and Re z > , we define

Ci(ω, q) =
∞∑

n=

e–zx cos(πnθ )
n( – qn)

, (.)

Si(ω, q) =
∞∑

n=

e–zx sin(πnθ )
n( – qn)

. (.)

Note that these functions can be considered as q-analogs of the Clausen functions (.)
and are related to the q-dilogarithm by

Li(ω, q) = Ci(ω, q) + iSi(ω, q). (.)

Now, we will use the Mellin transform method to obtain the integral representation

Li
(
ω, e–x) =


iπ

∫ c+i∞

c–i∞
ζ (s, z)F(θ , s)�(s)x–s ds, c > , (.)

where

ω = e–zx+iπθ , x > , Re z > ,  < θ < .

Recall that the Mellin transform for a locally integrable function f (x) on (,∞) is defined
by

M(f , s) =
∫ ∞


f (x)xs– dx, (.)

which converges absolutely and defines an analytic function in the strip

a < Re s < b,

where a and b are real constants (with a < b) such that, for ε > ,

f (x) =

⎧
⎨

⎩
O(x–a–ε) as x → +,

O(x–b–ε) as x → +∞.
(.)

The inversion formula reads

f (x) =


iπ

∫ c+i∞

c–i∞
M(f , s)x–sds, (.)
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where c satisfies a < c < b. Equation (.) is valid at all points x ≥  where f (x) is contin-
uous.

We first compute the Mellin transform M(ψn(x), s), where

ψn(x) =
e–nzx

n( – e–nx)
, x > , Re z > , n ∈N. (.)

Since

ψn(x) ∼ 
nx

, x → +, (.)

ψn(x) ∼ 
n

e–nx(z–), x → +∞. (.)

We concluded that M(ψn(x), s) is defined in the half-plane Re s > . That is, the constants
a and b satisfy a =  and b = +∞, which values can be used for all n ≥  and Re z > . The
Mellin transform of ψn(x) can be obtained from the following integral representation of
the Hurwitz zeta function ζ (s, z):

ζ (s, z) =


�(s)

∫ ∞



e–zx

 – e–x xs– dx
(
Re s > ,

∣∣arg( – z)
∣∣ < π ; Re s > , z = 

)
. (.)

Note that ζ (s, z) is expressed also by the series

ζ (s, z) =
∞∑

k=


(z + k)s , Re s > , z 
= –, –, . . . . (.)

For the other values of z, ζ (s, z) is defined by analytic continuation. It has a meromorphic
continuation in the s-plane, its only singularity in C being a simple pole at s = ,

ζ (s, z) =


s – 
– ψ(z) + O(s – ). (.)

Applying the Mellin inversion theorem to the integral (.), we then find

ψn(x) =


iπ

∫ c+i∞

c–i∞
ζ (s, z)�(s)(nx)–s ds. (.)

We use the Stirling formula, which shows that, for finite σ ,

�(σ + it) = O
(|t|σ–e– 

 π |t|) (|t| → +∞)
(.)

and the well-known behavior of ζ (s, z) (see [])

ζ (s, z) = O
(|t|τ (σ ) log |t|), (.)

where

τ (σ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


 – σ , σ ≤ ,

 ,  ≤ σ ≤ 

 ,

 – σ , 
 ≤ σ ≤ ,

, σ ≥ .
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Then we obtain the following majorization of the modulus of the integrand in (.):

O
(|t|τ (σ )+σ– log |t|). (.)

Consequently, the integral (.) converges absolutely in the whole vertical strip of the
half-plane Re s > . Then we replace x by nx, where n is a positive integer, and sum over n,
and we then obtain

Li
(
ω, e–x) =


iπ

∫ c+i∞

c–i∞
ζ (s, z)F(θ , s + )�(s)x–s ds, c > , (.)

where

ω = e–zx+iπθ , x > , Re z > ,  < θ < .

3 Asymptotic at q = 1
The integral (.) will be used to derive asymptotic expansions of the q-dilogarithm. The
contour of integration is moved at first to the left to obtain an asymptotic expansion at
q =  and then to the right to get an asymptotic expansion at q = .

Let us consider the function

g(s) = ζ (s, z)F(θ , s + )�(s). (.)

The periodic function zeta function F(θ , s) has an extension to an entire function in the
s-plane (see []). Hence, the function g(s) has a meromorphic continuation in the s-plane,
its only singularity in C coincides with the pole of �(s) and ζ (s, z) being a simple pole at
s = , , –, –, . . . .

Now we compute the residues of the poles. The special values at s = –, – . . . of the
periodic zeta function are reduced to the Apostol-Bernoulli polynomials (see []),

F(θ , –n) = –
Bn+(, eiπθ )

n + 
. (.)

We need also the following asymptotic expansions of �(s) and ζ (s) at s = :

�(s) =

s

– γ + O
(
s), (.)

ζ (s) =



– z + s log
�(z)
π

+ O
(
s). (.)

Hence,

lim
s→

(s – )g(s) = Li
(
eiπθ

)
,

lim
s→–n

(s + n)g(s) =
(–)n

(n + )(n + )!
Bn+(z)Bn+

(
, eiπθ

)
.

Here Bn(z) is the Bernoulli polynomial (see []).
Let N be an integer and d real number such that –N –  < d < –N . We consider the

integral taken round the rectangular contour with vertices at d ± iA and c ± iA, so that
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the side in Re(s) <  parallel to the imaginary axis passes midway between the poles s =
,  – , –, . . . , –N . The contribution from the upper and lower sides s = σ ± iA vanishes
as |A| → +∞, since the modulus of the integrand is controlled by

O
(|A|τ (σ )+σ–/ log |A|e– 

 π |A|). (.)

This follows from Stirling’s formula (.), the behavior ζ (s, z) being given by (.), and
the following estimation:

∣∣F(θ , s + )
∣∣ ≤ ζ (σ + ) = O(), |A| → +∞.

Displacement of the contour (.) to the left then yields

Li
(
ω, e–x) = Ci(θ )


x

+
(




– z
)

Ci(θ )

+
N∑

n=

(–)n+

(n + )(n + )!
Bn+(z)Bn+

(
, eiπθ

)
xn + RN (x), (.)

where the remainder integral RN (z) is given by

RN (x) =


iπ

∫ d+i∞

d–i∞
ζ (s, z)F(θ , s + )�(s)x–s ds, x > , Re z > . (.)

From (.), we find

∣∣RN (x)
∣∣ = O

(


xN+

)
.

4 Asymptotic at q = 0
Recall that the periodic zeta function satisfies the functional equation (see [])

F(θ , s) =
�( – s)
(π )–s

{
e

π i(–s)
 ζ ( – s, θ ) + e

π i(s–)
 ζ ( – s,  – θ )

}

(Re s > ,  < θ < ), (.)

first given by Lerch, whose proof follows the lines of the first Riemann proof of the func-
tional equation for ζ (x).

It is well known that the asymptotic expansion near infinity via the Mellin transform is
obtained by displacement of the contour of integration in the Mellin inversion formulas
(.) to the right-hand side (see []). However, the integrand (.) has no poles in the
half-plane Re s > . The periodic zeta function F(θ , s) has an analytic continuation to the
whole s-space for  < θ < . Moreover, the poles of �( – s) in equation (.) at s = –, – . . .
are canceled by the zeros of the function

e
π i(–s)

 ζ ( – s, θ ) + e
π i(s–)

 ζ ( – s,  – θ ).

On the other hand from (.) we easily obtain

�(s)
{

F(θ , s + ) + F( – θ , s + )
}

= –
(π )s+

s sin πs


{
ζ (–s, θ ) + ζ (–s,  – θ )

}
, (.)
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where we are able to simplify (.) by the well-known reflection formulas

π

sinπs
= �(s)�( – s),

sinπs
π

=

π

sin
πs


sin
π ( – s)


.

Proceeding similar to above we also obtain

�(s)
{

F(θ , s) – F( – θ , s)
}

=
(π )s+

s cos π (s)


{
ζ (–s, θ ) – ζ (–s,  – θ )

}
. (.)

Moreover, the integral representation (.) is valid for all  < θ < . So we can replace θ

by  – θ in its integrand. Using the above decomposition (.) and (.), we then obtain

Ci
(
ω, e–x) = –


iπ

∫ c+i∞

c–i∞
(π )s+ζ (s, z)

s sin πs


{
ζ (–s, θ ) + ζ (–s,  – θ )

}ds
xs (.)

and

Si
(
ω, e–x) =


iπ

∫ c+i∞

c–i∞
(π )s+ζ (s, z)

s cos πs


{
ζ (–s, θ ) – ζ (–s,  – θ )

}ds
xs , (.)

where ω = e–zx+iπθ ,  < x,  < θ < ,  < Re z, and  < c < .
Note that the special values ζ (n, z) (n ∈ N) are expressed in terms of the polygamma

function ψ(z),

ζ (n + , z) =
(–)n+

n!
ψ (n)(z), z 
= , –, –, . . . , (.)

and ζ (–n, z) (n ∈N) is reduced to the Bernoulli polynomial

ζ (–n, z) = –
Bn+(z)
n + 

. (.)

Applying the identities for the Bernoulli polynomial

Bn( – θ ) = (–)nBn(θ ),

we obtain

ζ (–n, θ ) + ζ (–n,  – θ ) =
(
(–)n+ – 

)Bn+(θ )
n + 

, (.)

ζ (–n, θ ) – ζ (–n,  – θ ) =
(
(–)n – 

)Bn+(θ )
n + 

. (.)

The integrand in (.) has a meromorphic continuation in the s-plane, its only singularity
in the half-plane Re s >  coincides with the pole of / sin πs

 being a simple pole at s =
, , . . . . Then by the Cauchy integral, we can shift the contour in (.) to the right, picking
up the residues at s = , . . . , N , with the result

Ci
(
ω, e–x) = 

N∑

n=

(–)n ψ (n–)(z)Bn+(θ )
(n + )!

(
π

x

)n

+ QN (x), (.)
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where

QN (x) = –


iπ

∫ c+N+i∞

c+N–i∞
(π )s+ζ (s, z)

s sin πs


{
ζ (–s, θ ) + ζ (–s,  – θ )

}ds
xs . (.)

Using the following estimations in a vertical strip s = σ + it, σ 
= ,±,±, . . . ,


sin πs


= O

(|t|–e– π
 |t|), (.)

we obtain

∣∣QN (x)
∣∣ = O

(


xN+

)
. (.)

Similarly,

Si
(
ω, e–x) =

γ

π
B(θ )


x

+ 
N∑

n=

(–)n ψ (n)(z)Bn+(θ )
(n + )!

(
π

x

)n+

+ O
(


xN+

)
. (.)

Proposition . Let ω = e–zx+iπθ , x > , Re z >  and  < θ < . Then

Li
(
ω, e–x) ∼ γ

π
B(θ )

i
x

+ 
∞∑

n=

in ψ (n–)(z)Bn+(θ )
(n + )!

(
π

x

)n

, x → ∞. (.)
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